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PREFACE

The success of this summer's Geophysical Fluid Dynamics Program owes much to
Myrl Hendershott's excellent and engaging survey of the Oceans' General Circulation,
including recent developments in the Theory of Recirculation Gyres and Thermocline
Ventilation. Hendershott's lecture notes are included in the first part of this volume.

The diverse fluid dynamical subjects discussed ir. this summer's program are
summarized in the abstracts of lectures by the staff and visitors. But the main thrust of
this summer is, as always, revealed in the reports of the individual research by the
Fellows.

We thank the Office of Naval Research and The National Science Foundation for
their continuing support.

The GFD Steering Committee.

MyrI Hendershott
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LECTURE 1

THE GENERAL CIRCULATION OF THE OCEANS: THE BASIC EOUATIONS

1.1 Introduction

In order to study the dynamics of the ocean and
atmosphere, we have to follow basic laws of physics which
lead us to try to solve a series of conservation equations,

Mass: Dp*+ P()

Du. - , ' O.j (Z)
Dr

Momentum: p0 9= - I - (

Heat: P* D + - -DT- " 0i

J

Salt: _ 
Q4D

State: P*= p*(p*,T, S) ()

with the appropriate boundary conditions at the solid earth
and sea surface. The most critical is that at sea surface,
requiring a good knowledge of the dynamics of the atmosphere
and its interaction with the ocean.

Note: P'= potential of body forces, ( = density, =
velocities, T = temperature, S = salinity, p* = pressure,
= stress tensor,A,- = chemical potential for S,. = heat
flux, C = salt flux and B =6-'N /T .

One can try to solve all the above equations together
numerically, but because of the wide range of scales
present, insight must be gained from approximations which
help to focus on a certain parameter range and transform the
system into a solvable one.
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1.2 Approximations

Approximations are of two kinds: (1) Neglect of small
terms relative to large ones; (2) Parameterization of the
effects of averaged scales.

The most common approximations are summarized below:

a. Incompressibility of the ocean

Equation (1) becomes 1" £ = o as long as
equations (3), (4) and (5) imply _ -, ._

b. Boussinesq

Assumes that the spatial and temporal variations of pO are
small, hence the density can be treated as r , except in
the hydrostatic equation. Thus (2) becomes

=:u - -Z - C_

DXZ XC

where sp and p are now the departure of and p* from the
hydrostatic state and p, the spatial and temporal average
of /0 fo

c. Eddy diffusivity parameterization

(4) becomes S & . r - : s-

where K is the eddy diffusivity for the salinity,...

d. Equation of State

(5) is conventionally approximated by 7 h-7- L ( V
where a and b are constants. As a consequence, the
pertubation density r is usually assumed to obey

4 (24/5 K (
in whichK,are eddy diffusivities of both salt and heat.

"

I

I
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Since the earth rotates, the set of equations has to be
written in rotating cordinates. The result of the
traditional approximations, setting rv"(earth radius), '/r
small (kaL Z,)' the introduction of the t,-plane
coordinates and neglect of the metric terms (see Pedlosky,
(1979, page 327 for discussion) leads to

(7)

U, + UU. + VWy + Vif- f, = - /P + (Av;u: + AHV H 8L

V,+Uv + Vvy+ WY,+ fu = Py /P + (A;,VI: :AH~k (8

14W + UWX + vn y+ W~vZ P: / 7e+ (A 1,' .)+ AHVk2W (9)

+ =(10)

in which f - fo + y , - 2f sino , = COSO 0

In addition to a simplified set of equations, to solve a
specific problem, one needs some knowledge about the
boundary conditions at the surface and bottom. At the
boundaries, the stresses (wind friction and bottom drag,
respectively) influence the interior flow through the Ekman
vertical velocities associated with the divergence of the
Ekman transports, WE-= (/- r )L ,-)at the surface and
v/. Z. (v,-u" ) at the bottOm whe~e Dr is the Ekman layer
depth .r A-1 )& . The Ekman vertical velocities
are significant because they are the means by which surface
and bottom stresses communicate with the flow outside the
Ekman layers, where vertical diffusion of momentum has
ceased to be important. For details on the derivation, the
reader is refered to Ekman (1905) and Pedlosky (1979).

1.3 Scaling

Ine can now try to estimate the relative size of each term
in the above equations (6) - (10) in order to assess their
importance.
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Scales: -- U( - , ,

We introduce (Rossby number), z~ and g

Equation (9) leads to If we consider the vertical
velocities to be extremely small, then -/< % and we can
introduce r such that W/ Z r H/ and L ( 2 becomes of
order 1 if V1 not so small).

With small vertical velocities and a small Ponumber (valid
for most places in the ocean), the leading terms in
equations (7), (8) and (9) are

t~

+ Ge$-rophic balance

and f

This leads toP ecm UL and D a 0 hoUL/gH. (7), (8), (9),
and (10) then becomD Co fo

r-eLt< - 'Ew U2-  - - U

go / Ev A -+- V 4.)

-~~ V; E ,,, v- , 621

V VC-'3
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where A4 AV Ekman number.

1.4 Simple models

From the set of equations (11) - (14), we can look at a
series of models, each resulting from certain approxi-
mations.

a. Shallow water model

Assumptions: 5 Homogeneous - - =
No vertical friction

. _ - - _

W 4JR/ U§ (and therefore(f )T

-and which gives ,-t)
The horizontal pressure gradient is independent
implying that the horizontal velocities remain independant
of *if they are so initially (u,%=v,.= o). As a result, the
fluid moves in column. This is valid even if Ro >0(1) as
long as the fluid is homogeneous and 4< 1. The momentum
equations are

6 (15)

'/& 4  - V' y + (16)

-4- )' (17)

Horizontal momentui diffusion can be added without violating
u'4=V4=o. The above result can also be extended to several
layers. This procedure retains the simplicity of the
shallow water dynamics, but with stratification. The
inviscible layer flow over/under one another. A particular
case is the 1 1/2 layer model where the lower layer is
asserted to be at rest, but where deformation of the
interface remains possible.

b. Ouasi - geostrophic Shallow Water Model
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Assumpttions: No vertical diffusion
Homogeneous
R,<<1,@,o <<1, (<<1

relief/relief <<I

Between the Ekman layers, using equations (15) and (16), we
can derive the vorticity equation,

(r~--~)(18)
where,= vorticity 0 -- 1
Vertically integrated mass conservation gives

which leads to

T.3) (19)

Using the fact that Ro, ;<<I,
the lowest order of (11)P"and (12) give

- - - Y. < a, + , 3

which imply that / =i9 where streamfunction.

Tofirst order, J1 can then be approximated by

To/
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which, substituted in (19), gives the quasi-geostrophic
equation.

b(~Tr~P / -

This can be extended to n-layers (Pedlosky, 1979). When the
fluid is continuously stratified, then we can no longer
integrate the vorticity equation vertically. Instead the
vorticity and mass conservation equations must be cross-
differentiated to eliminate the vertical velocities. In the
absence of external forcing and lateral diffusion, the
quasi-geostrophic equation becomes

L~& ~(21)

where N (;.) is the Brint-Valssala frequency.

1.5 References

Ekman, V.W. 1905: On the influence of the earth rotation
rotation on ocean currents. Arkiv.
Natem, Astr. Fysik, Stockholm 2 (11).

Pedlosky, J. 1979: Geophysical Fluid Dynamics.
Springer-Verlag, Berlin and New York.

1.6 Suggested reading

Evolution of Physical Oceanography (1981). Edited by
B. A. Warren and C. Wunch, The MIT Press, 623 pp.

Notes submitted by: Eric Chassignet, University of Miami
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LECTURE 2 1

2. OBSERVATIONS i

This talk provides basic observational background and
acts as a guide for the upcoming discussion of the various I
general circulation theories.

2.1 A DESCRIPTION OF THE SURFACE CIRCULATION I
The first figure we will look at is the ocean surface

wind pattern. Surface wind stress plays an important role
in theories of ocean circulation by inducing an Ekman I
vertical velocity at the top of the ocean.

Fig. 2.1. 2.2. are of the global surface wind
distribution in summer (2.1) and winter (2.2). One feature
we should note is the dependence of the wind direction with
latitude. In both north mid-latitudes and south mid-
latitudes, the wind is generally eastward. In the tropics,
the wind is westward. Both mid-latitude and tropical winds
are strong; the mid-latitude winds are quite variable.
Another aspect of the global wind is its "seasonality".
This is most obvious in the Indian Ocean, where the wind
field actually reverses direction between winter and summer;
the "monsoon".

The next figure (Fig 2.3) is of global surface
currents, which broadly resemble the surface wind structure.
Principle features on this map are the great circulation
"gyres" in each ocean. The so-called subtropical gyres are
found in the mid-latitudes. They have counter-clockwise
circulation in the southern hemisphere and clockwise
circulation in northern hemisphere. There are counter-
clockwise subpolar gyres in the higher northern hemisphere
latitudes also.

The subtropical gyres have intense western boundary
currents. The two most obvious western boundary currents 1
are the "Gulf Stream" in the north Atlantic Ocean and
"Kuroshio" in the north Pacific Ocean. There are western
boundary currents in the south oceans also, but they are
less obvious and weaker than the Gulf Stream. It should be I
noted that Somali Current, which is a western boundary
corrent of the Indian Ocean, reverse direction seasonally in
accordance with the local winds. l

I
I
I
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The equatorial currents between two mid-latitude gyres
flow westward as do the westward trade winds, but an
eastward north equatorial counter current is visible in the
Pacific and Atlantic.

Also shown on the map is the Southern Ocean or
Antarctic Circumpolar Current (ACC). This current goes
around the world without being blocked by land masses. It
is deep and its volume transport is estimated as up to
hundreds of Sverdrups (/ Sy =10 my/ ) . In comparison, the
Gulf Stream Volume transport is 0C") Sv. Thus the ACC is
one of the strongest currents in the oceans.

Variability in global surface circulation can be
observed from satellites. Fig 2.4 is the global meoscale
sea height variability measured by the SEASAT altimeter
(Cheney, 1982). The contours reveal features in the
variability pattern, some of which correspond to features of
the large scale current system. Variability in the North
Atlantic and North Pacific is dominated by the highly
energetic and variable Gulf Stream, and Kurshio system.

In the southern hemisphere, the Agulbas Current below
Africa and the Falkland/Brazil current confluence off South
America are clearly apparent (Although the later may be an
artifact of imperfact filtering of Patagonian tides). High
sea level variability in the Antarctic Circumpolar Current
extends in a nearly continuous band around the polar oceans.
Also, the north equatorial current systems in both the
Atlantic and Pacific can be seen as zonal bands of much
higher variability

2.2 A DESCRIPTION OF THE INTERIOR CIRCULATION

Fig 2.5 shows vertical profiles in the three major
oceans of temperature from the top of the ocean to the
bottom. The lower 2500-3500m of water are close to 0 C and
exhibit very little temperature variation relate to water
near the surface. These cold deep temperature suggests that
such water comes from the surface at high latiude. Note
also the transition region from the vertically homogeneous
deep water to more hetereogenous surface water. This
transition region is identified as the main thermocline.
Understanding its structure is a main research target of
general circulation theories.

Lynn and Reid (1968) published vertical sections of
potential temperature, density and salinity in Atlantic,
Pacific and Indian Oceans. Fig-2.6 comes from the Atlantic
Ocean. Note the apparent connection between the deep waters
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and the surface at high latitudes. The passage of Norwegian
Sea and Greenland sea water can be tracked by its low
temperature and especially by its relatively high salinity
( 5- ). This is broadly called North Atlantic Deep
Water (NADW). Another source of deep water is in the
Antarctic whence very cool (below0 C) and less salty (than
NADW) water penetrate northward. This water is broadly
called Antarctic Bottom Water, (AABW). Note also that on
this section, the upper 2000 m of the ocean is much more
complex than the deep water, suggesting great variability in
the processes that set water properties near the surface.
Note that very warm, salty, and light near surface water is
seen at the center of the subtropical gyres. Large
latitudinal variations of the thermocline are also present
here. The thermocline is much shallower and sharper in the
tropics (above 200m) and deepest at mid-latitudes (,-/t) ;
at higher latitudes it tilts upward.

On the Pacific Ocean Fig 2.7 and Indian Ocean Fig 2.8,
there is no deep water source to the north comparable to
that of North Atlantic Deep Water (NADW). The deep water is
mixing of the North Atlantic Deep Water which comes around
Antartic and the Antartic Bottom Water. Again we can see
the location of the subtropical gyres and a thermocline
pattern very similar in the tropics and mid-latitudes to
that of Atlantic Ocean. There is high salinity water from
the Red Sea in the Indian Ocean; the mediterranean salt
tongue in the Atlantic is not obvious at the western
section. No such high salinity source occurs in the Pacific
Ocean.

2.3 FORMATION SITES AND CIRCULATION OF DEEP WATER MASSES

The previous pictures show that the deep water have
sources from high latitudes. Fig 2.9 a.b shows the over-
flow current from the Norwegian Sea as proposed by
Worthington.Dense water passes through the Denmark Strait
and the Iceland, Scotland passage, through the Labrador Sea
and finally becomes the North Atlantic Deep Water.

Fig 2.10 shows the distribution of bottom water
potential temperature in the Weddell Sea. This picture
suggests flow of heavy water off the ice shelf to form the
deep bottom water which finally contributes to Antartic
Bottom Water.

The deep water circulation is very different from that
of the surface. Fig 2.11 shows some aspects of the global
deep water movement, observed by direct measurement as
inferred from property distribution. North Atlantic Deep
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Water moves along the west Atlantic, moving southward under
the Gulf Stream and further into the South Atlantic. The
Antarctic bottom Water also goes along the western boundary
in the South Atlantic but northward, under the southward
flowing (NADW). In both Pacific and Indian Ocean, deep
water goes northward along the western boundaries. At great
depths, abyssal basins are bounded by mid-ocean ridge
systems as well as continents; narrow passes in the ridges
are probably important paths for the flow of abyssal water.

Stommel (1957) proposed a deep circulation scheme,
which is based on simple global dynamics in a flat bottom
ocean. This is shown in Fig 2.12. The deep water, with its
sources at both the north and south high latitudes, moves
equationward in western boundary current. Poleward flow
(which is toward the sources in the model) occurs in the
interior, and forms a counter-clockwise flow in the north
hemisphere and clockwise flow in the south hemisphere. The
strong bouncary currents in this picture are in rough
agreement with observations and inferences about the deep
circulation; the interior pattern has not been throughly
studied but must be strongly influenced by bottom relief.

2.4 MODE WATERS

Fig 2.13, 2.14 show the vertical distribution of
potential temperature and salinity across the North Atlantic
Ocean at 36 N. A major feature at shallow depth in these
pictures is the presence of a region of vertically
homogeneous potential temperature and salinity just east of
the Gulf Stream.. This water mass, with its temperature just
above 18 C, is called eighteen degree water. It is found on
the western side of the subtropical gyre aid is believed to
be formed by winter convection in the upper ocean.

Modification of water properties at the surface in
winter time is followed by subduction and the modified water
below lighter water is an important feature of upper ocean
circulation. Thus on Fig 2.13, a mass of subducted, nearly
isothermal water is visible at dm depth in the east
Atlantic. Note that it overrides the tongue of salty water
emerging from the Mediterrean at roughly 1000-1200 m.

2.5 WESTERN BOUNDARY CURRENT AND INTERIOR CIRCULATION IN
THE UPPER KILOMETER OF THE ATLANTIC

The Gulf Stream is a major feature of the North
Atlantic generai circulation. It is perhaps the best
studied western boundary current in the world oceans and its
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observation provide major testing grounds for comparison
with theories.

An important aspect of the Gulf Stream is that its
path is highly time dependent. As an extreme example Fig I
2.15 (Fuglister, 1951) shows, over a period of several days,
the detachment of a piece of the Gulf Stream. The detached
portion forms an individual eddy while the main current
closes behind it. Such newly formed eddies or "rings"
subsequently generally drift westward, Some may rejoin the
Gulf Stream at some upstream location. It is hypothesized
that the Gulf Stream ring formation provides an important
mechanism for cross-stream transport of materials and water
property.

Fig 2.16 shows a plot of the vertical structure of
Gulf Stream flow at about 55 W due to Richardson. This plot
is based on calculation from floats, drifers, and current
meters. This picture clearly shows the main eastward
surface intensified Gulf Stream jet (into the paper) and two
counter-flows on either side. It is not fair from this
picture to say that Gulf Stream flow is depth independent,
but is fair to say that the Gulf Stream does reach the
bottom in this region.

Fig 2.17 shows the variation of volume transport of
the Gulf Stream as a function of downstream path (Knauss
1969). These transports are larger than those simple wind-
driven theories can account for, suggesting the presence of
recirculation in the vicinity of the western boundary
current. Worthington (1976) hypothesized the North Atlantic
Circulation given in Fig 2.18, whlich shows a highly
confined gyre in the north western corner of the North
Atlantic subtrropical gyre. This recirculation pattern has
a Gulf Stream Volume trasport of 147 Sv, which is consist
with Knauss's picture (Fig 2.17) and well above the expected
wind driven transport.

Also shown in Fig 2.18 are average east-west flow
velocities <u> and meridional eddy fluxes <u'v'> of zonal
momentum at 4000 m along 70 W and 55 W (Schmitz, 1977); note
the eddy convergence of eastward momentum in the vicinity of
the deep mean flows in both cases. Hoag (1980) suggeststhat the eddy "thickness flux"-.<M/ 9> similarly
contributes to the maintainence of deep recirculation near
the Gulf Stream. There is no general agreement about the
spatial structure of the deep recirculation.

Fig 2.19 is the Ivers (1975) interpretation of the
circulation pattern for the northern North Atlantic. Panel A 1

I
i
I
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is the upper water and panel B is the deep water. The
circulation was based on the geostrophic calculation and the
distribution of properties. Note that Ivers also suggests a
strong recirculation of the Gulf Stream.

He shows a bifurcation of Gulf Stream into northward
and southward flowing branches at about 50 W. The southward
branch feeds back to the subtropical gyre. The northward
branch eventually reaches the Labrador Sea, a site of North
Atlantic Intermediate and deep water formation.

The flow associated with that part of the Gulf Stream
that is believed to return to the subtropical gyre has not
been well mapped. On the basis of limited number of drifter
paths, it appears quite variable. The mode water visible at
depth of 600-800 m in the east Atlantic in Fig 2.13, 2.14
above the Mediterrean salt tongue is evidence of this return
flow.

The flow beneath the ocean subtropical gyre is very
different. Reid (1979) has suggested that some salty water
from the Mediterrean overflow makes its way northward along
the eastern boundary to the Norwegian Greenland Sea.

Water which follows the northward branch eventually
enters the Labrador Sea, in Ivers' circulation, it is there
much denser than when it left the Gulf Stream. There it may
overturn to such great depth in the winter that the Labrador
Sea is believed to be a significant source of deep water in
the North Atlantic.

2.6 References

Cheney, R.E., J.G. Marsh and B.K. Beckley, 1982:Global
mesoscale variability from colinear tracks of SEASAT
altimeter data. J. Geophys. Res., 88, 4343-4354.

Fuglister, F. C., and L. V. Worthington, 1951. Some results
of a multiple ship survey of the Gulf Stream. Tellus
3:1-14, (212).

Hogg, N.G., 1983: A note on the deep circulation of the
western North Atlantic: Its nature and causes.
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Ivers, W.D., 1975. The deep circulation in the northern
North Atlantic, with especial reference to the
Labrador Sea. Ph.D. Thesis, University of California
at San Diego, 179 pp.



I
20

Knauss, J.A., 1969. A note on the transport of the Gulf
Stream. Frederick C. Fuglister Sixtieth Anniversary
Volume, Deep-Sea Research 16 (Supplement):117-123.

Lynn, R. J., and J.L. Reid, 1968. Characteristics and
circulation of deep and abyssal waters. Deep-Sea
Research 15:577-598. 1

Reid, J. L., 1979. On the contribution of the Mediterranean
Sea outflow to the Norwegian-Greenland Sea. Deep-Sea
Research 26:1199-1223. (111).

Richardson, P.L., 1983:Eddy kinetic energy in the North
Atlantic form surface drifters. J. Geophys. Res.,
88(C7),4355-4367. m

Schmitz, W.J., Jr., 1977. On the deep general circulation
in the Western North Atlantic. Journal of Marine
Research 35:21-28.

Stommel, H. 1958. The abyssal circulation. Deep-Sea
Research 5:80-82.

Worthington, L.V., 1976. On the North Atlantic circulation.
The Johns Hopkins Oceanographic Studies 6: 110 pp.

Notes Submitted by: Liang gui Chen, Florida State
University, Tallahassee, Florida

I

I
I
I

l i lI I1



21

Figures

Fig. 2.1 Global surface wind distribution in summer.

Fig. 2.2 Global surface wind distribution in winter.

Fig. 2.3 Global surface ocean current.

Fig. 2.4 Global meoscale sea height variability measured
by the SEASAT altimeter.

Fig. 2.5 Vertical profiles in the three major oceans of
temperature from the top of the ocean to the
bottom.

Fig. 2.6 Vertical section of potential temperature,
density and salinity in the Atlantic Ocean.

Fig. 2.7 Vertical section of potential temperature,
density and salinity in the Pacific Ocean.

Fig. 2.8 Vertical section of potential temperature,
density and salinity in the Indian Ocean.

Fig. 2.9 a.b a:overflow current from the Norwegian Sea.
b:Dense water passes through the Denmark Strait

and the Iceland, Scotland Passage.

Fig. 2.10 Distribution of bottom water potential
temperature in the Weddell Sea.

Fig. 2.11 Global deep water movement.

Fig. 2.12 Deep circulation scheme proposed by Stommel
(1957).

Fig. 2.13 Vertical distribution of potential temperature
across the North Atlantic Ocean at 36 N.

Fig. 2.14 Vertical distribution of salinity across the

North Atlantic Ocean at 36 N.

Fig. 2.15 Gulf Stream detachment Fuglister (1951).

Fig. 2.16 Vertical structures of Gulf Stream flow at 55
W.

Fig. 2.17 Variation of volume transport of the Gulf
Stream as a function of down stream path,
(Knauss 1968).
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Fig. 2.18 Average east-west flow velocities <u> and
meridional eddy fluxed <u'v'> of zonal momentum
at 4000 m along 75 W and 55 W.

Fig. 2.19 a.b Interpretation of the circulation pattern for
the northern North Atlantic, Ivers (1975).
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LECTURE 3

FUNDAMENTAL LARGE SCALE CIRCULATION THEORIES

Stommel's review article on the large scale ocean circulation (1957) discusses
the evolution of ocean circulation theories. Beginning with Hough (1897) and Golds-
borough's (1933) models in which precipitation and evaporation were driving mech-
anisms for the oceans' circulation, Stommel comments: "Indeed, one needs merely
to introduce two additional physical ideas:

1 . Ekman's (1905) notion that the direct frictional stress of the wind is con-
fined to a thin surface 'boundary layer', and that viscous shearing stresses are
unimportant dynamically in the deeper body of the ocean, excepting perhaps,
at the bottom.

2 . The concept of a narrow western boundary current of a highly frictional
and/or inertial character."

Dr. Hendershott discussed the first of these ideas in this lecture, including the effect
of the resultant Ekman pumping as an upper boumdary condition for Sverdrup's
interior solution. The final part of this lecture is a discussion of abyssal circulation
theories.

3.1 Ekman Flow

The fundamental circulation theories all hinge upon the ability to incorporate
boundary forcing into a model. Ekman's theory incorporates the wind or bottom
stress as the driving mechanism in a thin boundary layer.

Consider an incompressible, homogeneous, rotating (2Q! - f0 ) fluid with infinite
depth. At the surface boundary we may impose the following boundary conditions:

w(0) = 0

T = (' Y

and as z - oo, u, v - 0. The primitive equations then reduce to:

-fo /, = = 1a('r) (1)
_ Oz

+f~u = vv,, - T() (2)
p 8z

u, + v, =0. (3)
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It is a simple matter to solve these equations and the resultant velocity fields
are:1 e_/a= 1 (.,) [.rX cos(2z/D - ir/4) - r, sin(2z/D - r/4)] (4)

(pf v)1 l /2

V = 1 e rD ' sin(2z/D - ir/4) + r cos(2z/D - r/4)] (5)(Pf = p~V)112'

w = 0 where D = (v/2fo)1 / 2  (6)

The solutions are the familiar Ekman spiral, and of notable interest are the decay
scale, clockwise rotation of the velocity vector with depth, and integrated transport
which is perpendicular to the surface wind stress. These features may be seen in
figure 1 below.

Figure 1
A typical value for the decay depth above is computed from different sets of

observations, and according to measurements done by Gonella (1968) is of the order
20 m. Sverdrup took this idea a step further by allowing horizontal variations in
the wind stress, and arrived at a consistent formulation of a driving mechanism for
the large scale wind driven circulation.

Horizontal variations in the wind stress may be considered as a direct extension
of the Ekman spiral result provided the variations are small compared to variations
in the vertical. This is equivalent to having the Rossby and Ekman numbers small
with respect to one. If we define the Ekman transports UE, VE as

UE, VE = j (u,)dz, (7)
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then the verticle Ekman velocity, pumping or suction, is obtained from mass con-servation as!
WE = UE, + VE,. 

(8)

For a given surface stress this expression may be rewritten

WE= a rykj~v dz +*fT z (9)

Pof

where r is the surface wind stress.
The ideas of Ekman flows and their associated Sverdrup transport are so simple I

that people have been moved to ask if they are visible in the observations. These
concepts set the foundation for more involved theories in latter lectures and hence
both a thorough understanding and careful sense of confidence in them is requisite to
understanding and developing more complicated theories of the general circulation.

One of the prettiest sets of evidence for Ekman flows are measurements done
by Gonella (1968). Figure 2 is a progressive vector diagram compiled by making
current measurements simultaneously at 10, 25, and 75 m at one mooring for several
days. (The scallop shaped cusps are inertial oscillations with a period of 1 14 hours).
Figure 3 is their interpretation of the data in which the mean currents at each depth
are subtracted from the total. We can see the characteristic clockwise turning of
the velocity with depth, as well as a decay in strength of the current. The spiral
shaped dashed line is a theoretical fit to the data using a constant vertical eddy-
viscosity of A, = 125 cm 2/s. This set of observations as well as others (see for
example Hunkins (1967)), lend support to the existence of the Ekman flow. There
is however a large disparity in necessary values of the vertical eddy-viscosity A, and
its vertical dependence, ranging from 60-540 cm 2 /s necessary to fit the data. There
was much discussion on the ease of observing the Ekman flow, and it was pointed
out that the effects of inertial motions and heating and cooling may completely
overwhelm the Ekman signature in observational data. The supportive evidence
may still be used to help justify that part of the circulation theory attributed to
the wind.

I
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3.2 The Sverdrup Transport

The original Sverdrup paper (1947) is independent of Ekman's work in that Sver-
drup doesn't divide the ocean into an Ekman layer and a Sverdrup interior. The

following section will discuss Sverdrup's original ideas, while section 3.3 combines
the two original ideas.

Consider an incompressible fluid in geostrophic balance, possibly perturbed by
vertical momentum diffusion.

-fv = - - + Avuz (11)
Po

+fu = -PY +" Avvzz (12)p.

u, + vY + wX = 0 (13)

At the surface, z = 0, we impose a rigid lid, and wind stress as:

w =0 , poAvty z . (13)

If we now integrate equations (11-12) from the surface to some constant depth ,-D,
then

T
Z

-f -P. + - (14)
PO
TY+. U =-., + - (15)

PO

where 0= adz and P 0 -- dz.
fD L PO

Cross-differentiating 14 and 15, and further assuming the suface at z = -D is

impermeable we obtain Sverdrup's relation:

fl- = . (16)
PO

Sverdrup compares north-south transports predicted by this relation using observed
winds with independent transports calculated from hydrographic density measure-

ments. Figures 4a,b show a quite remarkable quantitative agreement between the

two methods, including a counter-current in the east-west transports.
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3.3 Combining Sverdrup and Ekman Ideas

The next logical step in formulating a model for the circulation is to couple Ekman's I
surface layer with a Sverdrup interior. This is easily understood by considering the
interior flow, below the Ekman layer, to be in geostrophic balance. Integrating from

a depth D up to the base of the Ekman layer we may define geostrophic transports

J ea d a (16)

then taking V of this equation we obtain

f0 v / (17)

At this point, through mass conservation, we make the connection with the adjacent
Ekman layer. -f, -t v' =- - -. i)

VX J6' 0(18)

That is we allow the Ekman layer to pump into, or suck fluid out of the interior,and
hence the relation -

The total transport now becomes the sum of a Sverdrupian interior and an Ekman
surface layer transport.

V = VE +V (20)

We now relate these ideas in tems of the approximate equations derived in
Lecture 1. Consider the mean flow equations involving only vertically integrated
quantities. The single layer, non-dimensional, vorticity equation becomes:

R (Ot- .+7. ay)VO+V,=(r. ry ) - E.V 2 0 + 6,V 4 0. (21)

For R,, e and e,, all much less than 1, we can solve

or - (7_ Y - T-') (22)

for various schematic wind fields to get an idea of what the general circulation
'looks' like. Note that we have dropped higher order derivatives, and hence must
supply a reduced set of boundary conditions. The point was made in the lecture
that one of the triumphs of this theory was how well its solutions compared with

large scale observations.
Consider the rectangular basin F, ttr' .5.

I
I
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Recalling tY= U = Oy, and rewriting (22) in dimensional form:

po I -(T, -,) (23)
P0

277r . 27ryor --, = sn-. (24)

To complete the problem we must pose boundary conditions. The no normal flow
condition, 0 = constant, may be imposed at either the eastern or western boundary.
Fortuitously we have chosen a wind stress whose curl vanishes on the northern and
southern boundaries. Thus, setting the constant to zero, t = 0, the two main
solutions are shown below.

Figure 6
The solutions correspond to either setting 1 - 0 on the eastern (fig. 6a.) or

western (fig. 6b.) boundaries.
If we consider the wind as representative of that over the sub-polar and sub-

tropical basins, we could conject that the solution in figure. 6a. was the more
physical. One member of the staff argued that this solution was the only one in
which the vorticity was consistent with that of the imposed wind stress. Analyti-
cally, it is not until we append boundary layers that we find the circulation must
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be closed by a western boundary layer. Using observed mean wind stresses this
relation produces mass transport streamlines which show considei able resemblence
to the observed surface circulation (figure 7.).

We can extend the concept of combining Sverdrup and Ekman ideas by con-
sidering a layered model of the interior circulation. Although layered models will
be discussed more extensively in la'tter lectures, we begin the frame work here in
order to compare the theory with observations as well as to introduce the abyssal
circulation.

Consider the two layer system in figure 7. below:

HII

The 1.5 layer model is defined such that the lower layer is at rest. The steady,
geostrophic equations integrated over the upper layer are:

-fDvl = -g'DDx + - - u1  (25)Pi

+fDul = -g'DDi + r- - ev1  (26)

P1

(uiD), + (viD) = 0 (27)

The interfacial friction terms proportional to e will only become important in the
boundary layer and will thus be neglected in this analysis. Defining a mass transport
stream function 0 such that

vID um
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and cross-differentiating the momentum equations (25-26) we obtain Sverdrups re-

lation in the upper layer:

6Z = k.V x-. (28)
Pi

Integrating this equation out from the eastern boundary we have the following
relations (s--e Lecture 9. for steps in derivation):

O(X,y) = (ZE,y) + (XE - x) "- -  (29)

D(x, y) = D2 (XEY) + E -X) -- T (30)
pig,

The effects of including vortex stretching due to a spatially variable thermocline
depth (D) are seen in the schematic representation of the solution in figure 8
below.

Figure 8
The solutions are intuitively clear with the notions of Ekman pumping and

suction, a deepening of the thermocline towards the center of the subtropical gyre
due to Ekman convergence, and shallowning in the sub-polar gyre.
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Verifying the Sverdrup balance relation away from boundary layers in the ocean
may, as in the case of the Ekman flow, be an over- simplification. From hydrographic
measurements, investigators must choose a 'level of no motion', and then using
the thermal wind relations calculate transports. Leetma and Bunker (1978), and
Leetma, Niiler and Stommel (1977) support a Sverdrup balance in much of the
interior ocean to within possible errors in the data, e.g. these measurements do
not take into account fluctuations in the dynamics. Wunsch and Roemmich (1985)
argue however that in order to balance the heat budget for the ocean-atmosphere
system the interior transport must be greater than that predicted by the Sverdrup
relation. The Sverdrup balance has also been tested in primitive equation numerical
models. Holland and Rhines (1980) find that over large regions in the interior the
Sverdrup balance holds.

We have attempted to summarize the evolution of early wind-driven ocean
circulation theories. The 1.5 layer framework now enables us to go a step further
and consider an abyssal circulation, somewhat independent of the upper wind driven
circulation.
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3.4 Abyssal Circulation

Much of what is known about the abyssal circulation comes from observations of the
fluid properties rather than direct current measurements. We may obtain insight
into the distribution of these properties by studying a simple model/experiment
discussed in a series of papers by Stommel and Arons (1960a,b) and Stommel,
Arons and Faller (1958).

We start with the basic notion that fluid at the poles looses heat and possibly
becomes more saline (if there is freezing taking place). These processes cause the
fluid to become more dense and consequently 'sink' to lower depths, acting as a
source of deep water. Next consider, a rotating pie shaped region (see figure
below) with a free surface described by:

D(r)= h + 2g (31)

TW/

We now draw the analogy between sinking regions at the poles with a source,
(S), at the apex of the pie shaped region.

S = h, a2j .[crn/0] (32)

Considering geostrophic dynamics, we write the momentum equations in polar co-
ordinates. -Pr

=-211v - -2u (33)
pr p
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ht + I [(uD)e + (vDr)r] = 0 (34)

r

or using (33) h [( ) =0 . (35)

Cross-differentiating (32) and using (34) we have

ht + vDr = t e + (rv)r = 0 (36)

and with (31) and (32) the result:

-a2r u0  = 0 (37).

Note: For S > 0, v < 0 and we have flow towards the source! We develop the analogy
further by considering the transport of fluid in the pie shaped region (basin). For
5 > 0 at the apex we have:

Water in = Sv(r)D(r)r9. = S 1 + 2a-+ 4 2

r
2

Water out = S-- , surface is rising

Difference = Western Boundary Current = T(r)S 1 +k.) (38) I
From (38) we notice that the transport in the western boundary layer is greater than
the source and we therefore conlude that the fluid is recirculating into the boundary
layer. An interesting way to predict the behavior of these flows was pointed out by
one of the staff during the lecture. In the geostrophic approximation, the Taylor-
Proudman theorem is valid and we may think of the flow as a bundle of columns
which as the surface rises move towards the source in order to minimize the vortex
stretching effect due to the variable surface height. Analogues like these may be I
considered for many combinations of sources and sinks placed around the periphery
of the region. The model is also easily extended to a spherical coordinate system.
Strong implications may be made concerning the abyssal circulation in the oceans. I
Kuo and Veronis (1971) sketch a possible circulation pattern for two point sources,
one in the southern ocean and the other in the north atlantic, see figure 1O.

I
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Fig. 2. The model for the abyssal circulation of the world ocean and the trmnsport in the
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LECTURE 4

4.1 BAROTROPIC VORTICITY EQUATION

The midlatitude barotropic vorticity equation is

f'b 0

Here is a stream function for the vertically averaged flow.,
in the x, y direction in an ocean of constant depth and density

t", tare components of wind stress, AN is the horizontal eddy
coefficient and r is the inverse time scale characterizing
damping by bottom friction.

With the scaling

we have > 4If / oO)I'

IR o Id_-I

I7

! A
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if we have

or, in dimensional form,

This is Sverdrup balance.

Total transport:

Ekman transport: I
V6

Geostrophic transport:

4.2 Canonical SverdruD Problem

- 0 on boundary

Two equally possible solutions
(cannot satisy %V =o on one boundary)

(Sverdrup' s Choice)

Z'.O I

I
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Choice of correct solution requires consideration of frictional
effects. Physical consideration suggests Sverdrup's choi-e.

Case (1) Wind inputs clockwise vorticity,
Western boundary friction inputs counterclockwise
vorticity.

Case (2) Wind inputs clockwise vorticity Eastern boundary
friction inputs clockwise vorticity.

4.3 Stounel Problem (1948)

Assume bottom friction plays dominant role in boundary layer.,

at boundaries

"-0 /COS I )
Use scaling:

x -( aCz

Then

0, 0 t 7t ;, 1
Interior solution (Sverdrup):

Boundary layer solution:
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Western z

Eastern -l =

With g=1 T

+ = AC+

Match solutions:

Stome( solution for O) -

(Note: W. Bondr lae C 1./

I

I
I

St m e so ut o fo II(E)
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*1 c-fo

Fig. 4. Surface height contours for the uni-
formly rotating ocean in cm referred to an arbi-
tay level

Fig. 5. S weanlines for the cae where the Cod-.
oL force is a linear function of latiude
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is shown below; note that in this case northern/southern boundary
layers are also needed.

4.4 Extended Stommel problem 0 X: A

Consider a rectangular basin with a>>b

We look for solutions in the form

Then v) r. _ I

or

+ L2- C I
where LB
General solution is I

- Ae + ee

I
i
I
I
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where +11  L T124-~P
A and B are determined from the boundary conditions

for Z= o, a
Limiting case: For L6 <<b

4.5 Basin of arbitrary shape - StoMl Droble.

0 at ;C 5Efr

Interior solution:

[ t()

IeVt14 
d

No
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Boundary layer: We anticipate a western boundary layer.
Therefore set i=>% £- IxW AL

"- +.' + C%+++' 'P,+ P,
uta: Zvi) +++2

-

Put a =1

E +B~4~ IyI+(aS-xwV),T A+ .+ B+,., () y -E / .+ C .+,?)
Matching interior to boundary layer gives

/-,

;ew 11

I

I
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4.6 Munk Droblem (1950)

We assume lateral friction plays the dominant role in the
boundary layer to close the Sverdrup flow. This is the Munk
problem. We take the wind stress as

,tr =0

Then the Munk problem can be formulated as

At' - ,= 0 C o............. L)

1'0 o-t @L)

Boundary conditions ( ) correspond to no tangential stress at
northern and southern boundaries ("slip boundaries"). This has
been chosen for analytical convenience since in this case no
northern and southern boundary layers would be necessary.

We adopt the scaling

Then % I

where (AM /3 ) I

Boundary conditions

xt x =0,:'f, : o " o
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Boundary layer solution techniques give

\= wA (rf6){ 1 WBL. + fVi'-

where fWsL, T-1 and %1L correspond to the western boundary,
interior and eastern boundary respectively and are given by

= - .- (I-. £%) i

Tw M. x3.3 J

IfI

iI

X (2

47N%3

C3' 
1

N.m

C, 13
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II
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LECTURE 5

THE EFFECT OF INERTIA

5.1 Nonlinear perturbation of the Stommel problem

Recall the scaled barotropic vorticity equation

(5. 1)

where

are the magnitudes of the inertial, bottom friction and
lateral diffusion terms respectively. In the limit of zero
Rossby number Ro, Stommel (1948) closed the problem by
introducing bottom friction in the case of the canonical
dimensionless wind stress ,n= (-coslry, 0). The steady
solution obtained to 0(Ro) for the equation

+ (5.2)

wa L 4 =Cie) T E (5.3)

which describes the usual Sverdrup interior flow closed by a
boundary laypr at the western boundary. Let us now write,
for RocE441i,

--4 s + +



I
68

Figure 1. Perturbation to the Stommel solution for Ro<(l.
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where .4,1 satisfies the 0(Ro ) equation

and-%) =0 on the boundaries. Substituting for'+s gives

which has a solution in the western boundary layer
approximation

VXF (-X)s~2w SL£%IfJe (5.6)

Note that "'is antisymmetric about y = 1/2 and so the
symmetry of the Stommel solution is broken by the
perturbation, as shown by Figure 1.

The boundary layer north of y = 1/2 is sharpened and the
boundary layer transport increased, while it is broadened
south of y = 1/2 and the transport decreased. This is
because negative relative vorticity is being advected from
the southern half-basin into the northern half-basin; before
rejoining the Sverdrup interior flow, fluid parcels
travelling northwards through the western boundary layer
must lose their excess negative relative vorticity through
dissipation in the region at the northwest corner of the
basin.

5.2 Fofonoff Free Nonlinear Solutions

Fofonoff (1954) considered the alternative limit of high Ro
-steady pure inertial flow with negligible forcing and
dissipation, i.e. he solved the equation

t- 'x C t.r* f C-0 (5.7)

with4=0 specified on the boundaries. This can be rewritten

" E Ro V 0(5.8)

which says tiat potential vorticity is conserved along
streamlines, so we may write
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k. V 1-4) (5.9)

Fofonoff considered the simplest choice for the functional F
by assuming linearity

R7O 't. +' = " (5. 10)

which admits an interior solution for Ro4'l, viz.

(5.11)

corresponding to entirely westward zonal flow. The
alternative choice of eastward flow could have been made,
but we shall see below that it is physically inconsistent.

The boundary condition^ =O can only be satisfied at one of
y=0,l at most, and so boundary layers are required to
satisfy4=0 at the other boundaries.
Consider first the western boundary.w=0. Setting --4r.+ ,-w
we obtain IZ. lpv*X =(

n wx x  =(5.12)

which, upon matching with the interior solution l4,gives

e- (5.13)

Doing the same for the other boundaries, we obtain for
arbitrary y.--(| 9I 04 I

The solutions for the choices y=0,l are shown below in
Figure 2. Potential vorticity r,+J must be conserved along
streamlines within the boundary layers, and comparison of
values of xr,4f at a point within the western boundary layer
with its value just outside the boundary layer on the same
streamline for either configuration in Figure 2 shows
westward interior flow to be consistent with this
constraint. Reversing the flow, which corresponds to posing
an eastward Interior flow, leads to inconsistency with
conservation of potential vorticity Vx f along streamlines.
The eight possible constructions are checked for consistency
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Figure 2. The Fofonoff solution with y, =0,1, due to
Fofonoff (1954)
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vx<O04--4-conservation of v. + fa- vx < 0'

-- v = 0 f foAL

accelerated western decelerated eastern CONSISTENT

v > 0 - pon e atten of > ~ + ' 0I

v.~ > 0. V >01

v< 0 conservation of v + f -vx

X - vx = 0 f oNONEI

decelerated western accelerated eastern CONSISTENT

Figure 3. Consistency of the eight possible boundary layerI
flow patterns with the conservation of V,+f
along streamlines.
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in Figure 3, confirming that in all consistent cases, the
western boundary layer is accelerated as it is fed by the
westward interior flow and the eastern boundary layer
correspondingly decelerated.

5.3 Bottom Friction and Inertial Boundary Layers

we now consider perturbing the free inertial solutions with
bottom friction and wind stress, i.e.3--)PO J) = GAI- 6(5.15)-
Suppose the Fofonoff solution to be not significantly
altered by the perturbation. Then integrating over the
region enclosed by a closed streamline of the Fofonoff flow,
we obtain

The left hand side of this is trivially zero and so, by
application of the divergence theorem, the following
integral constraint is derived,

cCAAJ~LL -C " -LA (5.16)

Imagine a wind with westerlies in high latitudes and trades
in low latitudes. We then have curll<o and !3..4>O for the
flow given by the choice y0=O (with a northern boundary
layer) as the flow is clockwise and the line integral taken
counterclockwise. Hence a slightly perturbed Fofonoff flow
is not inconsistent with the integral constraint (5.16). The
selection of a northern inertial boundary layer is also
physically consistent because the self advection of fluid up
the western boundary layer will lead to "piling-up" of the
streamlines at the northern end of the boundary layer.

Niiler (1966) proceeded to obtain a velocity scale for the
Fofonoff flow, noting that the major contribution to iAM.L
comes from the northern boundary layer. Applying
dimensional analysis to the constraint (5.16) and noting
that the boundary layer flow has magnitude ujb , we obtain

J I u[
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Figure 4. Numerical solution of the bottom friction
(Stommel) model due to Veronis (1966) for Ro<41
to Ro)l.
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I
We know, however, that the inertial boundary layer thickness 9%
and the Sverdrup velocity US have magnitudes

TO 1(b 6 )(5.17)

Defining Ro = Usbp , we obtain

Us (5.18)

Veronis (1966) solved (5.15) numerically for various values
of 41"c ,showing a smooth transition between the forced
dissipative Stommel solution (g(e,- 0) and the free Fofonoff
solution (oe'-). For large Po/&% , Veronis found that
U ./U o in agreement with the dimensional
analysis above.

The main effect of the nonlinearity is to advect negative
relative vorticity up the western boundary, across the
northern boundary, and down the eastern boundary.

5.4 Lateral Diffusion and Inertial Boundary Layers

We first wish to apply the same analysis to the Munk problem
as we have to the Stommel problem. Munk, Groves and Carrier
(1950) solved

for Ro41 by setting * =Nm+Rl as before. The results are

qualitatively similar to the nonlinear Stommel solution, as
shown by Bryan's (1963) no-slip numerical calculations in
Figure 5. Increasing Ro did not, however, lead to the
Fofonoff inertial solution. Indeed it was not possible to
calculate solutions at all for Re;ioo . Let us therefore
consider perturbing the Fofonoff solution by the addition of
some wind stress and lateral diffusivity, i.e. solve (5.19)
in the limit of large Ro.

As in S5.3, we can obtain a simple integral constraint on
the solution by considering the area enclosed by a
streamline of the unperturbed Fofonoff flow (away from any
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Fig, 10. Numerical solutions of the barotropic vorticity equation (2.1.1) with only lateral

diffusivity and with a wind stress curl of the form - sin (r.y/b) (adapted from Bryan. 1963). 1

Figure 5. Numerical solution of the lateral diffusivity
(Munk) model due to Bryan (1963), with Reynolds
number k- =Ro/.a ranging from Re-5 to Re=60,

with no-slip at the boundaries.
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boundary layers) and by assuming the perturbation to the
flow to be small. This yields the requirement

6m4. id "4 t -C I (5.20)

which, upon noting that ctA Lt4, reduces to

> 0 (5.21)

A
whereS is the relative vorticity (=V +) and 1 is normal to
the streamline and directed outwards. However, in the
interior of the Fofonoff flow ,j-.o , while just outside the
boundary layers T<o and so V I<o on the enclosing
streamline. The constraint (5.21) is therefore violated,
which means that the flow cannot simply be a slight
perturbation to the steady Fofonoff solution.

Let us continue, however, to attempt to construct a
frictional sublayer under the inertial boundary layer. At
the western and eastern boundaries, the boundary layer
equation is

FqF F
+FKx lfJ ± 'G IIA (5.22)

with internal inertial boundary layer solutions (Gal

(j-~jo)( i - - - (5.23)

We are now able to deduce the thickness~of the frictional
sublayer, given that the streamfunction within the
frictional sublayer will scale as the streamfunction within
the inertial boundary layer: 9r
Matching nonlinear and frictional terms in (5.22) gives

P I.
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But I**o

and so

Y L (5.24)

which implies that the nonlinearity actually reduces the
thickness of the frictional boundary layer, if it exists.
Integrating (5.22) with respect to x, and matching to the
internal solution (5.23) we obtain, for the western boundary
layer

poF F~

scaling Y=& and qF.v- gives

-1<4, + N ' 4j f= (j) (5.26)

with 0 1*'4 CO

and P- j 0- (5.27)

Writing 1.A. V= L ac j/ -
(5.26) and (5.27) become

(5.23)

and

Lk - Y=-O a' 0 (5.29)

which describes the classical problem of uniform flow in the
+y direction- past a flat plate, with a negative downstream
pressure gradient. This admits a boundary layer solution.
However, the eastern boundary layer equation transforms to
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flow past a flat plate with an opposing pressure gradient,
which does not allow a boundary layer solution, but instead
results in separation.

We have therefore been able to construct a frictional
sublayer at the western boundary, but not at the eastern
boundary.

Ierley and Ruehr (1986) solved the boundary layer equation

(5.25) at the western boundary by writing

= (X) (I) (5.30)-,

and rescaling xXX Y3to give the ordinary differential
equation

S + '%A (5.31)

where t .

The plus sign is appropriate for the southern half
subtropical gyre (interior feeding boundary layer), the
minus for the northern half (boundary layer feeding
interior).

The boundary conditions are

Ce Z. f '(0)= 0 IN SL~f 0-k WL 5.2
co =QN(O) =0 '&* (A(& (532

The unknown boundary condition on cp at x=0, obtained by
shooting so that cf(aa)=1, corresponds to the wall stress for
the no-slip case and to the y velocity at X=0 for the stress
free case. Let this unknown condition be 6(A) , as its value
depends on the degree of nonlinearity k . In Figure 6 we
see solutions for t(X'), the solid line being obtained
numerically and the dotted line by cuntinued fractions.
Ierley (1987) studied the stability of each of the multiple
solutions. In both cases a stable solution exists for all
'A0 , and in both cases there is a critical value of ?P0
beyond which no solutions exist. He conjectured that the
failure of the boundary layer model was related to the onset
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Ruehr, 1986).



81

of recirculation in solutions of the full partial
differential equations.

B6ning (1986) also conducted numerical experiments with
lateral f7-iction, allowing slip at the boundaries. The
major points of comparison with the bottom friction model
are:

*Small nonlinearity advects negative relative
vorticity J up the western boundary in both caseE.

*Dimensionfull transport initially decreases as Ro is
increased in both cases.

*With bottom friction, transport begins to rise with Ro
when the northern boundary layer current reaches the
eastern boundary.

*With lateral friction and slip, transport begins to rise
with Ro when A = Ro/4s' has exceeded the critical value
A 0.29657 such that for k>?€ , no boundary layer
solution feeding the interior exists.

*With lateral friction and slip, the region of enhanced
transport in the northwest corner (recirculation
region) tends to stay in the north-west corner.

Note that the slip boundary condition (no stress) leads to
no vorticity generation at the boundary and so parcels at
the wall cannot change their potential vorticity.
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LECTURE 6

INITIATION OF SVERDRUP FLOW

6.1 Introduction

In this lecture we introduce time dependence and examine
the initiation of large-scale flow from a state of rest.
Thus the steady solutions examined in the preceding lectures
are augmented by transient solutions. The time-dependent
equations admit a variety of wave solutions. As a
consequence this lecture begins with a review of the linear
wave solutions of the shallow water equations. We then
investigate the transient modifications to the Stommel-type
solutions discussed in Lecture 4. These modifications are
succinctly demonstrated in the numerical solutions of the
linear problem by Anderson & Gill (1975). We also examine
the nonlinear problem that is forced by unsteady winds
(Veronis, 1970). The lecture concludes with a discussion
of the study by Kawase (1987) on the initiation of deep
ocean circulation.

6.2 Linear Wave Solutions

The starting point for our review are the linearized
shallow water equations

i =
Uto

where f=fo +jy and 'Yz(x,y,t) describes the free surface.
By cross differentiation these equations can be condensed
into a single equation for v:

A \V K+ t V(6.2)

Inserting the plane wave ansatz

\V - = L(X-k-) (6.3)

in (6.2) yields the dispersion relation
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-k

zf

-k

(C)

Figure 1. Graphical illustration of the dispersion relation
(6.4). (a) The high frequency limit (6.5) (inertia-gravity
waves). (b) The low frequency limit (6.6) (Rossby waves).
(c) Projection of (a) and (b) on the ca-i plane (kFo).
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CvL ak. ')c (6.4)
0'

where C, 9D" Note that f=f(y) so that the plane wave
solution can be viewed as the leading term of a WKB
approximation.

The high frequency (large a') limit of (6.4) reduces to

< = C' '+ )  (6.5)

which is the dispersion relation for inertia-gravity waves.
This relation is shown graphically in figure 1(a).
Similarly the low frequency limit of (6.4) can be written as

ZOE2 (6.G)

This is the dispersion relation for Rossby waves and is
illustrated in figure l(b). In figure 1(c). this
information is shown projected onto the cT.X plane.

Another solution is obtained if we assume u = 0 in the
interior of the fluid as well as on the solid boundary x -

0. Then (6.1) becomes

(6.7)

0
Manipulation of (6.7b,c) yields the wave equation

Vtt - Q 1 (6.8)

Again we assume plane waves, viz.

V= h(K) e -t) (6.9)

where the amplitude now depends on x. Inserting (6.9)
in (6.8) results in the linear dispersion relation

C= + k (6.10)

An expression for *L can be obtained by using (6.9) in
(6.7c) and integrating. The result is
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kbv
k= v (6.11)

Finally we use (6.11) in (6.7a) to get an expression for
h(x) -P

h= h0e C x  (6.12)

for x<o. These non-dispersive waves, whose amplitude and
velocity decay exponentially into the interior of the fluid,
are known as Kelvin waves.

6.3 Mid-lattitude Rossby Waves in Rectangular Basins

In mid-latitudes the vorticity equation can be written

as

t-'J 3-< t ' _(vxS)- V t (6.13)

where R=(gD/f,), - is the wind stress,kis a unit vector
parallel to the z-axis and Eis a damping coefficient. It
is convenient to first consider free wave solutions; that is
solutions of

I - (6.14)

Assuming plane waves of the form IP=exp(i(lx+ky-O't)) we
recover the dispersion relation (6.6). The group velocity
vector

--0 T '- - 4 1 V .(6.15)

is shown in figure 2(a). The construction for reflected
waves, due to Longuet-Higgins (1964), is shown in figure
2(b). From this figure it is apparent that long Rossby
waves, that carry energy westward, are reflected at a
western boundary as short Rossby waves that carry energy to
the east.

The normal modes of a basin are found by assuming time-
dependence of the form exp(-iot) so (6.14) becomes

t 0 (6. 16)
V ~-1C~/
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Figure 2. The dispersion relation (6.6) in the 1-k plane.
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The incident and reflected wavenumber vectors (labeled) and
the group velocity vectors (directed towards the center).
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Figure 3. The solution r and v as functions of time.
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subject to the condition of no normal flow through the I
boundary.

The substitution I
*(X,4t)(6.17)

generates the Helmholtz equation

Z- ( L.. a 0 (6.18)

where is specialized to discrete values and the -
eigenvalue k" is

k A - . (6.19)

We must now discuss boundary conditions. For quasi-
geostrophic flows /'L/fo. This imposes .=O on the
boundary. This may violate mass conservation and we I
generalize to t= constant. The constant must be determined
by requiring fP'kdA = O Q

Before focusing on the initiation of Sverdrup flow in a
closed basin it is instructive to consider Rossby modes in
the infinite channel between y=o and y=b with l/=o along
these boundaries. We seek solutions of the form

'4' 0, (6.20)

Insertion of (6.20) in (6.16) gives an equation for <

where (6.21)

L=

and for which we assume( t (

Al
( 5n = C (6.22)

The resulting dispersion relation is

JV (6.23) 1

I

I
I I
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Figure 4. The numerical solutions of Anderson and Gill(1975). The 'upper panel is the baroclinic case. In thiscase fast internal modes are generated. The lower panel isthe barotropic case in which surface gravity modes are
formed.
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The limiting cases 1o and i-oo display quite different
types of behavior. For long waves (,&iO) The phase speed,
Cphase = is A

AA E_ I t, .(6.24)

These waves are dispersionless and ropagate phases
westward. The group speed, Cg = .£ is westward for

/ Li p (6.25)

Thus energy is also propagated westward by long waves. In •
contrast to the long waves the short waves are dispersive
and carry energy to the east. Their maximum group speed is

C = (6.26)5 8 (04 )

and occurs at a wavenumber

1=. 3 '(C7d (6.27)

We now consider initiation of flow in a mid-latitude
basin, x=O,a; y=O,b by switching on the wind stress at t=o.
We use the wind stress

X=--o Co34Lt) (6.28)

so the vorticity equation is

J~~r43l (6.29)

subject to -O on the boundaries. As in the infinite
channel we seek separated solutions of the form

11 ::--'IL-)A(xt (6. 30)

The resulting equation for 4 is

, Xxt 1(nt- J ,X 7,n(.1

with the conditions

AO ) = 0 (6.32)

e~~at)O .

~I

i
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Figure 5. The amplitude of the meridional velocitylvi.
plotted versus the forcing frequency normalized by the
maximal forcing frequency.
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We divide 4,Ix,t) into two parts: a transient part (XO
and a steady part 0,(x) such that

,(-, Q- (6.33)

The steady Sverdrup balance is

y / = -Con (6.34)

which upon integration gives

= - -O" Y-a )(6.35 )-'

The dynamical balance for the transient is

-LLe-t R711 0' t3bT 0 (6.36)1

The characteristic solution of (6.36) is

whee /i(Kt) 6 (-ct) (6.37)
where

from (6.32), (6.33) and (6.35) we see that (6.32) must be

0,c',) - ,,(x-c,) H(x-c,, ). (6.38)

The function H(x) is the Heaviside function; H(x<o)=O,
H(x>o)=l. The f .rm of g 1.5 Aj V are shown in figure 3.
Finally, to satisfy the condition 1-o at x=o We must add a
reflected field of short dispersive Rossby waves R that
satisfy

xx - R- t -f j -_ (6.39)

The full problem was investigated numerically by Anderson
and Gill (1975). Figure 4 shows the results of their
calculations. The upper panel shows the baroclinic case in
which slowly moving short waves penetrate the interior from
the west. The addition of weak bottom friction will kill I
these east-mQving waves and the steady solution will be
approximately recovered. The lower panel corresponds to the

i
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Figure 6. Contours of the time-averaged stream function

normalized by the maximum value of the stream function. 
The

forcing frequency decreases from top to bottom.
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barotropic case. For typical values of a and r the basin
traversal time is only a few days.

The effects of fluctuating winds on the mean and
transient circulation were investigated by Veronis (1970).
In this case the nonlinear vorticity equation

~(6.40)

is integrated numerically. With oscillatory wind forcing
there can be resonance between the forcing frequency and the
normal modes of the basin. This effect is illustrated in -o
figure 5 where the amplitude of the meridional velocity is
plotted versus the forcing frequency. At much lower
frequencies than those at which sharp resonances occur the
instantaneous solution is the steady solution driven by
-(+-), i.e. time only appears parametrically. The nonlinear
perturbative treatment of the steady solution (lecture 5)
thus implies rectification of the flow in a manner
qualitatively similar to that shown in figure 6. Note that
care must be taken to distinguish between eulerian and
lagrangian means if calculations such as these are invoked
in discussion of the distribution of properties.

6.4 Waves in the Tropics

In the tropics f=fiy so the shallow water equations
become

t+ D(U v ) -=-0 (6.41)
Now solutions are of the form

& 1K- oC
v = V(y)e (6.42)

The function V(y) is given by

V(y) = Hm (4C)etL (6.43)

Where'j=yl3/C and Hm(7U are Hermite polynomials. The
dispersion relation is

a- a. 40i- (6.44)
: l
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Figure 7. Sdhematic illustration of the scattering of an
equatorial Kelvin wave at an eastern boundary energy is
scattered into two coastal Kelvin waves and into long Rossby
waves whose group velocity decreases with latitude.
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For m = -1 V(y) = 0, but LL;O)L$O.

At sufficiently low frequencies the dispersion relation has
two limits. For short waves (1--too)

(6.45)

For long waves (1-O)

1- V ,Z,3 (6.46)
2r Jn

The former are dispersive Rossby waves that carry energy,
to the east. The latter are non-dispersive Rossby waves
that transport energy westward. As shown previously we can
find Kelvin wave solutions (m = -1), however this time we
let v=0 and these Kelvin waves travel eastward along the
equator.

In anticipation of the results of Kawase (1987), to be
presented in the next section, we consider the scattering of
an equatorial Kelvin wave when it reaches an eastern
boundary. At the boundary this energy is scattered into two
coastal Kelvin modes that travel along an eastern boundary,
one in the northern hemisphere moving northward and one in
the southern hemisphere moving southward. In addition there
is a long Rossby mode that is reflected back to the west.
This scattering is sketched in figure 7.

6.5 Establishment of Deep Water Circulation

We conclude this lecture by considering the initiation
of deep-water circulation. This discussion follows the
paper of Kawase (1987). Kawase's model consists of two
layers; a thermocline layer and a deep layer. The governing
equations are

U U-

t V1
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Figure 8. A numerical simulation of Kawase (1987), showing
the development of flow at (a) 5, (b) 10, (c) 20, and (d) 40
days. The contours are of layer height.
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(6.47)

U J -

Where g' =J g and the u and 1 superscripts denote the upper
and lower layers respectively. Neglecting the barotropic
mode permits formulation of the baroclinic mode in terms of
lower layer variables.

U+- -v =-Sit -nj

VL L -3Y hU T rv (6.48)

~~A~1U4Vf Q-w
where Q is a localized source of deep water in the northwest
corner of the basin. Kawase closes his model by specifying
w to be

VV =(6.49)

where X = constant. Here we note, without further
discussion, that this parameterization of w is controversial
(see Kawase (1987) .2 for his justification of this choice).
figure 8 (b) shows his results. This figure shows contours
of layer height. In this sequence one sees a southward
traveling Kelvin wave along the western boundary moving away
from the mass source in the northwest corner. This wave
turns eastward Fig 8(b) with little energy loss. Figures
8(c) & (d) show the evolution sketched in figure 7. The
westward propagating Rossby waves result in an equatorward
thickening of the eastern boundary layer.
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LECTURE 7

THE GENERAL CIRCULATION OF THE OCEANS: STATISTICAL ONE-LAYER
PROBLEMS

7.1 Introduction

In today's lecture we will discuss statistical one-layer
problems, with the material drawn primarily from a set of
numerical experiments by Griffa and Salmon (1989)
[henceforth referred to as G&S] and also the statistical
mechanical theory necessary to understand these experiments,
principally the result that for a large number of
realizations of a system, with constraints only on the
averages of the energy, potential enstrophy and potential
vorticity, if we choose the most probable distribution of
the ensemble in phase space (in a sense to be defined later)
we recover the Fofonoff equation. Some of the material
presented in this session, in particular the Fofonoff flows,
has already been covered in earlier lectures but will be
presented again for the completeness of this lecture.

7.2 Fofonoff Flows

We considered earlier the equation

T V =- V V . (7.1)

In the case where there is neither forcing nor wind stress
this reduces to

7CYC4)4-. Rq -(7.2)
and we get the Fofonoff flows for which

wnere U is the interior velocity. This of course is just a
special case and we could have written

where F is any function; however, we chose the linear case
because of its tractability.
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As we mentioned earlier, Veronis (1970) pointed out that
if we solve (7.1) with some Ekman drag and a wind stress
that is favorable to the Fofonoff flows in the sense that
the integral of the right-hand side of (7.1) over an area
bounded by a streamline vanishes, that is

then it would be possible to have a solution where

whereIis a functional and thus the left-hand side of (7.1)
is zero and the integrals of the two terms on the right-hand.
side of (7.1) around every streamline cancel. Thus we
concluded that as one increased the size of the wind stress,
this set of problems went quite smoothly from the Stommel
problem to a class of solutions which we will term the
Fofonoff-Veronis solutions, namely the Fofonoff flows but
with small amounts of drag and wind stress.

In this lecture, we will see these Fofonoff flows emerge
in two very different situations. Firstly if we solve the
time-dependent version of the conservation equation (7.2)

VZYJ+4 JNL)Vr C
in a box withVJ = 0 on the boundaries, starting from
random initial conditions, and run the numerical experiment
for a long time and then average the stream function over a
long time we will show, both from the results of G&S and
from theoretical insight, that the average solution <>
will satisfy the same equation as (7.3)

From the theory we will learn how the constants in (7.4)
turn back on the initial conditions.

Secondly, as G&S pointed out, if we consider the same
problem again starting from random initial conditions but
with small amounts of wind stress and bottom drag added,
that is

4 YQ VL~' ~. -E'y4C .0 (7.5)
then if the wind stress is favorable to the Fofonoff flows
in the sense mentioned earlier then we will again recover a
solution that essentially obeys (7.4). If however the wind
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stress is unfavorable to the Fofonoff circulation then, not
surprisingly, the solution is very different and very noisy
because the Reynolds' stress terms will be large.

7.3 The Statistical Mechanics of the Problem

Before reviewing the numerical work of G&S, we will
first make a detour into theory and look at the statistical
mechanics of a truncated set of equations. Firstly, we will
rewrite (7.5) in terms of q, the potential vorticity

and average this over a very long time

so that
y C ~ 4<Cu~~t~>(7.6)

where we have used the usual Reynolds' decomposition and
denotes the fluctuation from the mean. If the two terms on
the right-hand side of (7.6) balance, as they did in the
case we considered earli(;r where we recovered (7.3), then we -

expect the Reynolds' stresses, that is < ') >, to be
small and we expect to see solutions like the Fofonoff
circulation. If, on the other hand, the terms on the right-
hand side of (7.6) do not balance, we expect the
deviations from the average to be of the same order of
magnitude as the average and just as energetic as the steady

solution arising in the case where the forcing balances the
wind stress.

We will now consider the initial value problem. The
first case we will deal with is the one considered earlier
with no forcing or wind stress

withk4 = 0 on the boundaries. Initially we will deal with a
general =h.,A) . but will later revert to' Zpg , and
choose some random initial condition fork. One method of
attacking this problem is to expand the solution in terms of
those eigenfunctions 0;(with associated eigenvalues ) ofthe Laplacian Zappropriate to the geometry of our basin,
with VOA Z'4 k'~ VIi

I
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and the eigeniunctions ordered so that are an ascending
sequence of numbers. We can then write the stream function
as k+ (0 )iU 0 ( !d x )

1'i (7.8)
The orthogonality of the eigenfunctions means that, with an
appropriate normalization,

where-denotes the int, ral over the basin. If we
substitute the expansion for %V (7.8) into the equation
which it obeys (7.7) and also expand the topography h in
terms of the Ok , , =: J where the hj are coefficients
of the topography, then we will get a set of coupled
equations for A(t)of the form

where A [t:4) ts)and _

If we truncate the expansion (7.8) at some level, say-,1,joi
then we have a spectral model.

The equation (7.7) which4) obeys has a number of simple
conservati uantities, amongst which are the kinetic
energy E =-[- - and also ) where F is any function. In
particula ': V , the rverage potential enstrophy, and

r , the average potential vorticity, are integral
invarlants, and all of these quantities may be expressed in
terms of thej% . The simplest example is the energy

hEC E: £5 vq.. 70,: 17
ie. fl:

E (7.9)

Similarly we find J): , -h; 1 k;) (7.10)

- (7.11)

We will now consider a large number of systems
(7.7),(7.8), all of which started with initial conditions
which were different for each system but were such that when
we average over the initial conditions we get an average
energy E, an average potential enstrophyJand an average
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potential vorticity7 Z. Thus we have an ensemble of
realizations of this system. In the many-dimensional space
whose coordinates are the y{'s the evolution of one point
(that is one realization), with time will define a path. If
we think of a large number of realizations with initial
conditions that are in some sense close together we will
initially have a "cloud" of points. If we imagine that we
have such a large ensemble that we can think of this as a
"fluid" of system points in the same sense that we apply the
continuum approximation in fluid mechanics then, since none
of these realizations will cease to exist, the ensemble will
satisy a co servatiQn equation of the form

where r zip ?I=Ai corresponds to the density of
the realiza ions in phase space. This equation looks
exactly like the standard mass conservation equationS_4V.(p$ ) - o

From the definition of the Apl, if any of the indices
are equal then A: L = 0. Together' with the B * L this tells
us that the velocity field y, is divergence free, i.e.

This i!?'the analog ofV.U=0 and (7.12) reduces to

which is analogot's to jL4("9V) =0. Thus the volume of
this "cloud" of points is conserved, although the region
occupied by this cloud might be tremendously contorted as
the phase flow develops. The function P is important
because it enables us to calculate averages of quantities in
this flow, for example

where <> now denotes an average over the ensemble and

Here e(4,OA), is simply the volume of the phase space.
Normally we set 14=1.

I
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P is at this staae unknown. The essence of the
statistical mechanics used here is to average over the
ensemble using the most probable P subject to the
constraints applied to the system. In this case if
initially all of the realizations have the same E/yA and?
then we know, since in phase space E defines a sphere,JAan
ellipse and Z a plane, that at later times all of the
realizations will lie on a subspace determined by the
intersection of these surfaces. Instead we will choose for
simplicity the most probable distribution of P, which we
labelt, subject to the constraints not on each system but
on the averages of E,J.andZ

.= - ,

In this sense "most probable" means that P which maximizes
the quantity - S' of #j . This differs in
principle from, and 1'9 more tractable than, the situation
where all of the realizations had the same values of E,J)and
Z. If we have a large number of realizations and if N, the
number of yi, is large so that we have large systems, then
these two situations produce virtually identical results.

We will now motivate this choice of-&pkl). 1 as
the quantity which is to be maximized. Suppose we hate a
large number of realizations of this evolving model, wherel
are in state j. For a system where the y 's are discrete
the definition of being in state j is obvious, that is the
y.'s take specified values. For the case where the y;'s are
continuous a realization lies in state j if it lies within a
specified volume in phase space. We will suppose that we
can define the states uniquely in this way. The number of
ways Jvthat we can divide V systems such that we haveV, in
state 1, V, in state 2 and so on is given by a.. v!

Clearly V:'. Taking the natural logarithm of j w we
define Boltzmann's entropy function Svas

Syz i~'~JW ~[1~V ~ .~Vj *(7.13)
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We now define p as p:=Vj/lV ;this is the probability that a
realization is in state j. Using Sterling's formula that
log n! vlog YN for large n, we can rewrite the entropy( 7 . 1 3 ) a s 9 V _ [ V2 Io , y I DY; 2 .

-- V * Vda I t% ; (7.14)

Thus maximizing -2i PO nVt means maximizing SV and thus
finding the configuration of the ensemble, with V-
realizations in state j and so on, that is most pfobable in
the sense that there are more waysJLV to divide the system
into this configuration than any other configuration.

Hence our aim is to maximize -Sf lfbte4)l0 )€ subject
to the constraints EJol and %. This is a calculus of
variations problem which we will tackle by introducing
Lagrange multipliers and denoting

we must now maximize

S - 1 ,Lll?(-;) 4 l J(7.15)

with respect to variations in the X's and in P. When we set
the variations in the \'S, ,Ss, equal to zero we simply
recover the constraints FwJl. and Z We now vary the P's by
writing P=t+Ep and hence we require

an so a+ 
) 4E -C

if we choose p such that =0.
We find that
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~: ~ ~\~ A(7.16)
where C is some constant which we determine from the fact
that S=l ) 1. This is known as the Boltzmann
distribu zion.

Once we have foundIP , the most probable distribution of
P, we are able to calculate averages over the ensemble. For
example, the average of one of the Fourier components Yj is

S~~ eL1T~,-

since is of the form (7.16), tha is it is separable in
the yi, so that the contributions from the y other than
cancel in the numerator and denominator. Using the standard
Gaussian integrals I

we find that

We can now rewrite this in a more familiar form

where the( 's are the spatial basis scc of (7.8) for the
stream function %P. Averaging over the ensemble, (7.8)
becomes,

so that we can write (7.17) as
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or \A

Thus starting out with"he three simple invariants ,,uo
and Zoand choosing the most probable P we have recovered the
Fofonoff equation. In this equationXr/X is related to
the energy, and is determined by the initiaL energy , since
in the original Fofonoff problem (7.3) the corresponding
coefficient wasp/U. \/2NJ is analogous to the Y
term and thus specifying the average vorticity in the basin
tells us where the streamline =0 lies.

7.4 Numerical Results

We will now review some of the numerical results
obtained by G&S. Their work consisted of four different
cases, the first two of which (referred to as QGl and QG2)
are run-down experiments with no forcing but with a scale
selective damping given by

17 , N/ \C~7 Q _) = - -u~2Jy)

where is the relative vorticity. This model conserves both
energy and the mean vorticity in the basin, but both
momentum and enstrophy are dissipated. QGl and QG2 had
random initial conditions with QGl being about fifteen times
as energetic as QG2, This model was devised in such a way
that when one reaches the final flow, the boundary layer
structure in the Fofonoff flow is well resolved. The
initial evolution of QGI is shown in figure 7.1 (all of the
diagrams in this lecture are reproduced from G&S); times in
these figures are scaled in a basin turnover time which
depends on the initial rms velocity. Clearly the flow has
developed rather rapidly to something which to a certain
extent resembles the Fofonoff flow after only 5 time units
[fig 1(e)]. We can follow this development by looking at
c - .*5 If we are dissipating 17 then c(t) will go
strongly positive and in figure 7.2 ,where we plot c(t) for
QGl, we can see that it rises quite rapidly initially
followed by strong oscillation which appears to be
associated with a persistent Rossby wave which only very
slowly decays even when we get to the end of the evolution
of the system. In figure 7.3, where we show c(t) for QG2,
the less energetic system, we see a similar rapid growth
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initially, but do not get the oscillation that occurred for
QGl. In figure 7.4 we see the final state of QGl at times
which are four tenths of a turnover time apart. This is the
one-two Rossby mode in the basin. We have virtually reached
the Fofonoff circulation except that we still have the
fairly energetic Rossby wave superimposed upon it; when we
average over the Rossby wave we get figure 7.5. The final
state of QG2, which was essentially QGl but with much less
energy, is shown in figure 7.6, and clearly QG2 has not
progressed as far towards being a Fofonoff-like flow as QG1.
A more sensitive way to look at this experiment is to plot
<q> against <qL>, which we do in figure 7.7 for QGI. We see
that the two gyres are different and not completely
equilibrated. As the experiment has progressed the two
slopes in figure 7.7 have become more and more equal but are
not yet exactly equal. The regions between the two lines
come from points along the boundary and the central
latitude.

The other two experiments by G&S were forcing
experiments, one of which (QGa) had a wind stress favorable
to the Fofonoff circulation and the other (QGb) had an
unfavorable wind stress, calculated by changin the sign of
the wind from QGa. The wind was of the form sin y. The
final flow from QGa is shown in figure 7.8 and that from Qb
is figure 7.9. Clearly these two cases are very different
and there is nothing in the final state of QGb which
resembles the Fofonoff flow to any significant extent. In
figures 7.10 and 7.11 we plot <q> versus <4)> for QGa and
QGb respectively. The QGa plot looks similar to that for
QGI [figure 7.7] with the simple linear dependence of the
two gyres again quite well-developed and a small cluster of
points in the center associated with the boundary and the
centre-line. By contrast, the plot for QGb is totally
different. The horizontal line of points in this case comes
from the two recirculating gyres. As in figure 7.9 which
showed the final state of QGb, there is no evidence in
figure 7.11 that the Fofonoff made has emerged, and the
fluctuations in QGb are much stronger relative to the mean
than in QGa.
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Figure 7.5 Final state of QCl averaged over the Rossby
wave.
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Figure 7.6 Final state of QC2 at time--91.2.
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LECTURE 8

1MULTI-LAYER AND CONTINUOUSLY STRATIFIED QUASIGEOSTROPHIC WIND
DRIVEN FLOWS

Here the new effect that we introduce is vortex stretching.
We neglect the relative vorticity abinitio. In the
quasigeostrophic approximation layers don't surface, but don't
give up!

We specify the wind stress through the Sverdrup relation..

1y(T? Y) =fo We (8.1)

8.1 Mid-ocean gyre

Initially we consider such that streamlines are closed. Thus
we need not consider the Jestern boundary layer (Rhines & Young,
1982a).

The three-layer quasigeostrophic equations are:

zz

~ jy(tl+f) (8.2)

,zy'-~ (2iib-) (8.3)

'7 (2K 2 .

HereF¢ =J2/0  (assume equal density jumps), R is interfacial
friction, E is bottom drag. For simplicity we assume further
that the ocean layer depths are equal: /v. =handFj= .
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I
We can calculate the barotropic flow immediately by summing

(8.2) - (8.4) and neglecting the bottom drag (the nonlinear and
inter-facial friction terms cancel):

//(K 1P 12 4e3 )= F(8.5)

When (8.5)is inserted in (8.3) a linear equation

I6 , Y * F?///) - 0 (8.6)

is obtained. We write the general solution

A~
1 Fk/ (8.7)

For calculatingAzone has in the middle layer, by integrating
(8.3) along a closed contour:

'z ) e - 1R 7(2K3)(8.8)

On application of (8.5) we obtain

3fV 7r .IcIC =j =6 I ^~l~ ~ h J '8 .9 )

Thus ,4= /3F and

_ (8 .10

Using (8.10) we have for the lowest layer

The general solution is

~t3 -A3 (by1-?34) (8. 12)
In a similar way we obtain A =&44(AR+1,or

((8.13)
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Finally
, - -(8.14)

Now
f2 = Ca #s Z4(8.15)

i.e.yzis homogeneous inside the closed contours. After this

(8.16)

I.e.g3is homogeneous too if there is no bottom friction. Also i=
const if R-PO or E>>R.

A A
All the above assumes the existence of closed 78 9jisolines

but this must be checked for a givenS'. If~is weak no closed
contours of ;3 or even 7" may exist. The flow in this case is not
shielded from the eastern no-flux boundary condition which
switches off the flow in the open contour region.

The region of closed fy is smaller than, and properly
contained in, the region of closed f contours (see fig. 8.1).
The complete 0(l) solution (8.10), (8.13), and (8.14) is
independent of friction providing the ratio E/R =const and obeys
a simple "Couette" numerology, in which the average circulation
in thej-th layer of the velocity about ̂ 1 is the average of that
above and below (Fig. 8.2).

The flow patterns are plotted in Fig. 8.3 using the simple
pattern, corresponding to a dipole of vertical velocity forcing
W,=-4Xinside a circle of radius 4j. The center of the gyre in
layer 2 is a distance yo = fllolF poleward of the center ofi?, the
barotropic gyre, while the deepest, smallest gyre (layer) is
displaced a distance fypoleward of the center of ; regardless of
the choice of parameters (for equal mean layer depths, H).

Now we will extend the above results to a continuously
stratified model providing all contours ofare closed. The
Boussinesq potential vorticity equation is

Or, F) - des, Yo ,(8.17)
I jYJ+ rz

• -- -- - l l n muln l l l l m~,Alm
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while we neglect the relative vorticity as before.
The boundary conditions are

and
if, '/" o 4S' z- -oO (8.19)1

Actually circulation penetrates to the depth D(x,y), below
which fluid is at rest and the conditions (8.19) are satisfied.
The total transport is Sverdrup transport.

S -Ye = (8.20)1

Assume q is homogeneous if 0 >-D(x,y) so that

S -j- (8.21) 1
Using the conditions (8.19) atls-D(x,y) we obtain

Y-= ,(8.22)

Applying (8.20) we have

3
cy, (XY) p /~ky Z ry (8.23)

The full solution (8.22), (8.23), may be combined to give

2 (yIy) ( z Y j (8.24)
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Where y* is determined by the curve =0; y* is the poleward-
most value of y on this curve ifP>o, and the equatorward most
value if io. We have assumed that ?OsoYE' Y .

The displacement of an isopycnal surface in this solution is
proportional torz. This is shown in Fig. 8.4 for the same
barotropic streamfunctionPas before. The gyre is deepest at
(x=O, y=y.,) where D =.2max.

8.2 Interior of the Subtropical Gyre

Now consider the basin-bounded circulation with the condition

fwe Jx -6 (8.25)

We shall use the three layer quasigeostrophic model in which
the thickness of the lowest layer is much greater than that of
the other two. Thus a negligible fraction of the Sverdrup
transport is in the lowest layer and

I-I r, -9/4/ (8.26)

This case is called the two and a half layer model (Yound &
Rhines, 1982).

If R= 0 from (8.3) we obtain by assumingy,= 0

(8.28)

S=y + F' ' //4 - (2 + /, )// ) (8.28)

A little thought shows that (8.27) and (8.28) imply thaty,,andf,
are functions of the known quantity

A

F= ,fly + F C-/// (8.29)

Notice that if H2is large, Fg is small and iy, i.e. all deeps
contours are blocked. Thus is very small.

We shall use meridionally variable wind stress for the
subtropical gyre with the following form of

We - o Y11 iTryl2 d) (8.30)
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Figurel8.4. Three meridional sections through the gyre at z 0, -1!on theden3 3 sbwnIbde
sity field z + ( " . computed from (5.12) with (IJL,/f.) = -L . Ihle isopycnal slope
is dictnufllous at '%z -D(i,y) (shown as a heavy line in [lhe figure). AD addition.-O contour
(ashed) has been included near the surface to show the isopycoal intersections %%iih z 0
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The barotropic streamfunction calculated from (8.1) will be
written as

V- af. (8.31)

where x=a is the eastern boundary where F= 0. The corresponding
pattern ofqis shown in Fig. 8.5. The functionipcorresponding to
(8.31) is contoured for various values of yd/9, in Fig. 8.6.
The contours are closed in the northwest of the basin; the extent
of this region increases as yr46/lafflincreases. If the forcing is
weak then all of the geostrophic contours may be blocked. For
instance using (8.31) it is easy to show that closed contours
exist only if = . F>

In the shielded region of closed contours there can be
substantial lower layer flows which pass through the western
boundary layer. In the absence of dissipation one is free to
chose an arbitary functional relationship betweenfand* . This
difficulty is overcome using the generalized Batchelor-Prandtl
theorem given by Rhines & Young, (1982) which shows that if the
dominant dissipative process is lateral diffusion off:, then the
potential vorticity is homogeneous in the closed region.

The outside closed contour eminates frolr the northern
boundary where y=e andS=O; it is thus"=A. It is also the
streamliner=0, hence from (8,28) we obtain inside closed
contours

P y -j // J(8.33)

andSj=O elsewhere. Note that kzis known from (8.35), and elis
calculated from (8.26). The streamline pattern cal-ulated from
(8.26), (8.31) and (8.33) is sketched in Fig. 8.7. Note the
north-south asymmetry of the flow and the poleward shift of the
gyre center with depth.

Now we can extend the above results to a continuously
stratified model (8.17) - (8.20). As before we have the solution
(8.23) - (8.24) where y4=6 now. The surfaceze-D(x,y) bounds the
region containing the wind-driven circulation from which the
potential vorticity gradients have been expelled. This is shown
in Fig. 8.8 for the simple forcing function
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yI

Jjgjtrc &S.Thc barottopic sticanifunction given by(g.31) Tritc western boundary layer is 'Ilo%%nI

s i ila c.1 *1.

Figure 8.6 The function V (2 (4tP) (a - z)cos(j ) for various iulues of ITf/p. The

outermost closed contour is dashed. As tbe strength of the forcing increases the cio--ed con-
tour region expands southward and eastward.
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0 0

Figure I. 7.Tble streamline pattern corresponding to(I. 33). The dashed canc is ithe outer-most
closed a4, contour inside of which the potential vorticity is uniform in the lov'r laycr.
Outside this region, a 0.

0' 2 5 0
mx

-1 0' D-J5D

F-iguic 2.I.The dcpth of the wind-driven circulation as a function of position from (9'.23) and
(.3N.Tlic bowl is deepest at the line segment x 0, 0 < y < 8 The circulation becomes
shallower as one moves south and east.

rigure 1.3. Tile streamlines from (f2)at Various depths in the wind-driven gyre. Thbis is no
inotion in the stippled regions outside the surface z + D = 0. The flow is confined to the
region of uniform potential vorticity.
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W e - W( - Wll) (8.34)

The region is deepest in the northwest corner of the basin and
shoals as one moves south and east. The streamlines
corresponding to (8.24) are sketched in Fig. 8.9. This sequence
clearly shows how the wind-driven flow is compressed into the
northwest corner of the basin as one moves downward.

The maximum depth of the circulation from (8.23) and (8.34)

is

3 413

D I zAd 1 (8.35)J z j , #, -'- -€

For J0 - . ''-  ,2/Q --S V/= S , s/- P ,s
and a = 26(i.e., (a square basin) it follows that D. r ,
D.increases as the aspect ratio, a/b, of the gyre increases.

8.3 The western boundary layer

The interior circulation patterns shown in Figures 8.7 and
8.9, must be closed by appending western boundary layers. This
problem has been solved numerically for the quasigeostrophic two
layer model by lerley & Young (1983).

Assuming,=0 we can write (8.2) and (8.3) in the form

~ ~) Jb~-~ -w z F y..I- (8.36)

JN''ftJ V(Yzi=tV& =LJAY Or, z) (8.37)

Now the boundary conditions are
Y/ V z %r o 67 1= cc y =b (8.38)

In (8.37) R is an interfacial drag which transfers momentum
vertically between the layers, and E is bottom drag. Adding
(8.36) and (8.37) we obtain

(8.39)
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In the Sverdrup interior the last term in (8.39) is small and
barotropic streamfunction is defined by (8.31) for Weof the form
(8.30). Using (8.26) one can eliminate ,from (8.37) to obtain

, "11y)- FzR V -6e-RooR lie11i)VZ (8.40)

It is clear that since -=0 on the boundary, a contour of
Fv/# which starts at y* in the eastern boundary must also hit the-
western boundary aty*(Fig. 8.10). Away from the western boundary
layer,:-, i- /o outside the closed contour of r and inside-.

Vz-- (0) (841)

where G is determined by conditions at the outer edge of the
northern boundary layer where fluid enters the interior. For a
general wethus northern exit region is the region in whichaf/a8)0.
Let us suppose that

Y 2 '/-'- =i (8.42)
where.Xis a constant to be determined. Substituting (8.42) into
(8.39) gives

13I/~~\1X (8.43)

Substituting (8.42) into (8.40) gives also

d -- -C. + R , ii-Z 14 / Y,,I J ..

i.e. (8.45)

where .4 R/ c // H . This quadratic has two solutions butonly

ony A =/[ +2 -( / A / 12 (8.46)

gives a physically acceptable solution.

The behavior of AasA is varied is interesting. If a-?
so that interfacial friction overpowers drag on the lowest layer,
,-%Y2. From (8.42) this means that the boundary flow is
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barotropic. Ife* so the intervacial friction is weak,A-+C e I
This means that the second layer flow is weak.

We now calculate G in (8.41) by requiring that the boundary
layer solutions obtained from (8.42) and (8.43) I

Y = - AC[f - exp- PX E)] eo WeY)/ / (8.47)

and the interior solution I
Ir (Jy+Ffo /e()(X-')lI) (8.48)

match in the intermediate region -

rZ(-c) ~~ (8.49)

Thus G is calculated by the elimination of y between (8.47) and
(8.48) using (8.49).

Full solution of the problem including the region where flow I
is out of the interior needs the careful numerical calculations.
The result is shown in Fig. 8.11a. One can compare it with
(8.33) obtained by asserting that . is homogeneous inside closed
isolines (Fig. 8.11b). The striking contrast of these figures 1
makes it quite evident that the functional relation between )Vzand?
is appreciably altered in the passage of streamlines through the
western boundary layer.

This consideration is intended to emphasize the possibility
of a strong affect of the western boundary layer on the potential
vorticity distribution in the interior of a wind gyre. This 1
failure of the Prandtl-Batchelor theorem is due to the passage of
every streamline through a frictional boundary layer.

8.4 Parsons' model of subtropical gyre

A particular difficulty in constructing closed models of the
ocean circulation is providing an adequate description of the
path of the separated western boundary current, a separation I
which seems essential to a realistic model of the gyre
circulation. A surprisingly simple model of the wind-driven
circulation for a two-layer ocean which predicts both the point
of separation and the path of the separated current was

I
I
I
I
I
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b

1. V.

II I'll___ - 1V 1 t '1,P

i.A schematic illustration of the way the contours in Fig.
must close in the western boundary layer. Because i',, is zero on

the boundary, a blocked contour which starts at ). on the eastern
boundary must also intersect the western boundary aty.

-G(')+ I with 6 calculated using the boundary -G'O +'I with G calculated by the incorrect ap-

hmyer matdiing argument; see (3.21). The apeement between the- plication theP-nlltceotermrs (9).tih ee

Ory aind numeric&) calculation is indicated by the plateau in the correctly given in terms ot q by (3.9), then the function in this figure

northiwest corner at the basin which coincides with the closed q would bc flat in the northwest corner %~here the q contours close

contours. (C[.. Fig. t.114 )



132

introduced by Parsons (1969) in a model of a subtropical gyre
(negative wind stress curl as before).

Consider only an upper layer of depth D to be moved by wind
stress of the form (8.30):

- S V = - _ .x -t e ly) /y (8.50)

HereV is the meridional velocity in the upper layer. Let the
lower layer outcrop, i.e. intersects the free surface atxtXxr(i9.
From the conditions

Ji ' = o , (X;) = 0(8.51)

we obtain

XS (Y) = XE- d4"'~/ Z~~) (8.52)

The depth at the eastern boundary Deis obtained for a given
by fixing the volume of the upper layer

f f.J c.Y = 2.01a~ (8.53)

The values of h = D/D and Dm..h/Do are shown in Figures 8.12a
and 8.12b as functions oay layer nThe upperer dep
first survaces in the north-west corner of the basin when A
where cis the smallest root of (8.52) atXh=i that can be
represented in nondimentional form

'(,A = 2(8.54)

For the wind stress the calculation
gives A,- =0.2 e Position of surfacing line for different values
of,AAis shown in Figure 8.13. Full solution including
frictional western boundary layer is shown in Figure 8.14 forrese

A comparison of this figure with charts of the observed north
Atlantic circulation shows good qualitative agreement,
particulary in the circulation of the separated current and in
the gross features of the return flow.

ForA)rcdeep layer is exposed to wind but we assumed the deep
layer to be motionless. This problem will be considered in the
next lectures'.
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LECTURE 9

9 PARSON'S MODEL APPLIED TO THE SUBPOLAR GYRE

Huang and Flierl (1987) extended Parson's model to
include an outcropping subpolar gyre. The lower layer
first outcrops in the subpolar gyre at the point where
If the outcrop region becomes larger, it can expand into the
subpolar gyre (Fig.l). In contrast to the isolated
subtropical gyre the outcropped region is not bounded by the
western boundary. For there to be mass transport between
the eastern boundary and the outcrop line, where it crosses
the zero wind stress line ( zO) there must be transport
along the western boundary, And the bounding streamline of
the outcrop has a stream function value of V0.

t

ovcyv I I Yk- 4,.;6

The resulting flow has transport T on the western
boundary of the subtropical gyre. The interior of both
gyres is in Sverdrup balance, and the Gulf Stream leaves the
coast and carries the subtropical Sverdrup transport plus T.
It crosses the line whereY,=0; there the western boundary
transport is exactly zero.

At y=yt , =0 so that
+ S~,va =0.

XS

As in the previous section, we can find the outcrop line

To find 4, we look at SL~ from (1) above, and use
L'Hopital's rule to find

% :0 so that V = hi. and

thus

%A
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In summary, the amount of warm water in the basin is
given by*6. The circulation is completed by frictional
boundary layers on the western boundary and along Kxj)
The western boundary transport and the frictional boundary
layer at i are the same magnitude, in opposite directions.
At , the Sverdrup interior returns all of the transport en
northward and there is no separated western boundary
transport north of The circulation is summarized in
fig.2.

Pedlosky (1987) modified Parson's model so that Ekman
flow is allowed to cross the outcrops, and there is no
geostrophic flow across the outcrops. This changes the mass
balance and thus the flow pattern. In Parson's model we had
the sum of the western boundary current, frictional
boundary current, geostrophic, and Ekman transport is zero.
It allows leakage of water to the south, since the Ekman
velocities are to the south. Parson's model is fairly
sensitive to changes such as this one.

9.1 Thermocline Theories

In principle, thermocline theories explain the
thermocline between the abyssal waters of high latitude
origin and surface waters that are strongly influenced by
the wind. These models are inviscid and steady and the
relative vorticity is neglected, and they ignore the sources
of the deep water. The equations that govern the flow are
mommentum conservation (geostrophy)

-59 v = -PX I ="P - (2)

The hydrostatic balance

0 = (3)

The continuity equation

VQ =0~ (4)

and density conservation

L k . 0:. (5)

From these equations the conservation of Bernoulli function
B : 0

Old (6)

and potential vorticity Q 1 5 yI
(7)

L -cIV 0
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can be derived. Therefore there are 3 conserved quantities
on streamlines, 9 , B, and Q.

If surfaces of constant P and B intersect, then the
solution is the lines of intersection. Q is constant on
this line. Therefore, there is a rule which associated
values ofy, B with Q i.e. Q=F(PB), and only two tracers
are independent.

Welander (1971) solved this problem by choosing
SYa =F(p). Then we have

r(p) T (8)

and

d(y) -i(y 0 )- - where -(y) i F()dQp

or

As an example Welander let

to get I/I ]

P =  -, surface (Q' )

From the general solution to (8) we can show that

At the surface > ,Y(O and Yp 0;

likewise at depth V/Z depth > 0.

I
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The center of the gyre moves northward in Fig. 3.
AS

N-

ft3 (nS5 satcc 4,W.
Another possible solution is

Sh 'y b C? fY%
To obtain a second order equation forp, making use of 2-3;

To solve this, we set Rxt LLSat the surface and p CA & at
depth. However, the solution determines

W _X 
+ ? at the surface and we are

not free to specify the Ekman pumping. If on the other hand
we specify P. and ve , we may find that P is discontinuous
where the fluid meets the stagnant deep water.

To solve the more general problem, we try to specify

both p at the surface.

and w at the surface, using (2-7),

We use these boundary conditions to solve

If Js Lz,4)and Ps are specified along a coast, then we know P(x,a)
everywhere, and from that the solution can be found
everywhere. 'However, this leads us to Killworth's
theorem. We would like to specify u=o at x=xe. Using
density conservation there we see that

But 0 3 =O so -5us 2 -0
which leaves us with wp . In carrying this argument
out, we find that as long as all the fields are infinitely
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differentiable, an-d the solution obeys u=o on the eastern
boundary then P = constant there. If Pf g e
then the interior must be stagnant. Note that if we are
considering a layered model, then some of the derivatives
will be discontinous and Killworth's theorem will not apply.

These considerations motivate a class of problems where
a circulation is driven by the wind at the surface and
overlies a deep resting fluid of density yC- ) (Fig. 4)

JC

We can formulate the problem as follows. We seek
solutions subject to imposed surface density PCX,O)= -- $JX)
where the Ekman velocity w€L ,L ) is less than zero. Also,
the water is quiescent below -a--H , and there is no density
jump there. The problem is reduced to solving

0"- > - Fc, P-
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Z---w (g 2c, c,) =/ W- eb

The surface conditions will determine the function F, and
H(x,y) will be determined in the course of solving the
problem.

To solve for the problem in a general way, we transform
the equations to density coordinates. For example, consider

B(x,y,z) = B(x,y,z(x,y,p))

then

PIC + P, if

Thus in density coordinates equations 2 - 7 become
-Po5V = -B. joP -'

_. Q~p~i3)
0=By -

for the governing equations.

The boundary conditions can then be derived. Requiring
no jump in density across 7-4 gives

Y b CX %)--P4 C IAV) )
in (x,y,z) coordinates. Given p4Cl) we can find

B 4 (z) = constant (v) -l + (T-) 7 (9)
We then invert ,&C1) to get - f , and insert into
(9). From this, we see that if we know p^Z-)then we know ip)
to a constant. Thus continuity of _p requires

B 'P (Y b = (Yb)

Likewise, if we want Px2 N-O at Yb , we require

l3(b = Bocy
Generally, we must findpCx(j) in the course of the
solution.
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Notice that if the resting fluid is homogeneous, '(
then 0b09~~7 CO pt e
and Be Therefore we have

13.).p= o(10d V -: 
but although p is continuous across - , x,
may be discontinous and Killworth's theorem will not hold.

Since we specify we at the surface and u=v=w=o at 3-0
the fluid in between must carry the Sverdrup transport. We
can express this as

This fixes the variation of along specified outcrops in

terms of w and F. More directly,

5.1# Pda +' PC-H) 14 H Jt~q
which is equivalent to the Sverdrup relation, A VXw .

In density coordinates we have

At the surface (z=o) Bp:O but ByxI):),4O
since c # X4 . If we move along the surface

Thus we have

JCBSJYS)- YO2 Q pie C'P4 8S), j-
To derive the Sverdrup relation in density coordinates, we
combine

and

to get ilw/

Integrating with respect to we find

to finally get

13-

l I I I I I I I II
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To summarize, the X, I and V IP formulations can be
displayed side by side

2=0 (X_ -S~c.) =0Ac, 5 B -
' ,s +m F(sp)= JP P85 Bj) We-

. X -Z 0

&-P o

In density coordinates, the bottom boundary condition is
applied at a known density, however, in (x,y,z) coordinates,
the bottom boundary condition is more complex and is applied
at the unknown z=-H. Also B is discontinous at z=-H
because z is not defined in a homogeneous fluid. H can be
calculated afterwards by

8pC? ) : )H
If the deep fluid is uniformly stratified,P:P. is the deepest
outcropping isopycnal, j=Yb xij) at the base of the
moving layer, and y*( ) is the abyssal stratification,
then the model is formulated as follows:

2 f(IMP +
yJfb

zyy -P
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and to match to the abyssal layers

anand 6 == J 9nd = $Y&

where now.jbJ) is unknown.

Huang (1986) solved the problem by startin in the north
west corner and solving the above equations point by point
in x and y. The integration progresses from the northwest
to the west and the north to the south This progression
comes from the need to determine C.Ci) first on density
outcrops and because P" along the outcrop is fixed at the
east coast.

At any point in x, y the procedure is as follows:

1. Guess Yb and compute B and Bp at P b.

2. Integrate to the surface. To do this, rC5AP is
needed on all the deeper isopycnals which was developed
earlier in the solution. At the surface (JB $
is arrived at

3. Adjust $ in order to make Up =O at P.Ps

4. Repeat 1-3 varying Ab until the Sverdrop relation is
satisfied.
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LECTURE 10

THE THEORY OF THE VENTILATED THERMOCLINE

Lecture 10 Part I

This theory was developed by J.R. Luyten, J. Pedlosky
and H. Stommel (J.P.O., 1983, 13, pp 292-309).

Let us consider N-layers model with thickness ., A,..A "

which intersect the sea surface at latitudes yj (yj=y;(x),
(i.e. the outcrop lines are a function of longitude). The
density of each layer is a constantf,-, they are
immiscible and there is no frictional coupling between the
layers. There is a model for the region immediately below
the surface mixed layer, so that vertical velocity on z-?p(,Y)
is Ir =Ur(3,g)(Ekman pumping velocity), 17 is the elevation

of the air-sea surface. Let e be positive north of the line
y=yw (x ) and negative between y,,and y=0. The motions within
each layer are geostrophic and hydrostatic.

" "- -Ulf4
J2J/U~(2)

fr~p- ~4(3)

~ (4)

Here n=l, 2,.. .N. The Sverdrup vorticity equation is ( from
(1,2,4)

J3 Ir"(5)
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When (5) is integrated over each layer --d we sum over all
moving layers we get:

Now we begin from the situation, when the only third
layer moves, and the region is restricted by aiz& <A..
Integration of the equation (3) coupled with the requirement
that layer 4 remain at rest yields:

- = -. ~-(7)

(8)

whe re Pand Of ZZ. Let us assume, that 6...0
From r6) and (7) one can obtain.a (h) "L -2 2 (9)<''

22 2P

) z ,7 t--" (X,)- e (9)

If we define the function -D (2 yBe)= Tgo' , c'IaX
(Sverdrup function), which is positive forgetL4'and some
constantA/: H. /1 3 /_xr so, that there is no zonal flow on X-rXe,

we can get e

3 ,Do :(X/Y)# +h (10)

Between y. and y.

I' 3  /U,/ (,1) I <
so that fluid columns are directly driven downward and
southward. As they cross the line 1v-Ye they are subducted
and in the region south of 2 layers 2 and 3 are in motion,
i.e.

? (2,"(12)
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(13)

Then, if 4 /-44/js the thickness of the fluid in motion,

- ,. , 9' 1/-,/ (12')

a u/1 - (13')

and O.VfAk-
The last equation gives / ,,',-I where G, is some
arbitrary function, i.e. the potential vorticit
trajectories coincide with the isobars in layer 3.
Within layer 2 the hydrostatic equation gives:

(16)

eq. (6) yields . t .,. -- (x'y) (

whose integral is H2172 ,.,( ) ""  (17)'

The constant of integration must, by continuity of A.,be /
so that on2:-:Cat _ -.//= ,4. = /0 .

Now we can determine function .k, so that on yIy,
h3=H, thus, noting that f =f(y)

where !-/(). Thus in Yt4 .3' /1 " (18)

Remember that I- then (18) yields:

So, from (9) and (19): +/Yxy) HO (20)

0-i
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-)In layer 3 the point
(x,y) on a

trajectory is
connected by the
indicated contour to
its origin at the
point of subduction

The trajectory of a fluid column in layer 3, that is
subducted at the point (3' y.),.traLverses a path of constant
which is also a path of constant H (eq.18). The resulting
path is given implicitly by. the relation /x,Y)z//71,y1

or,) 4(- / ' ( - . The trajectory X3(y)
emapating from this point is given by H/(Zj,V=/1(xe,41/)= ,or W
Do' =H([(- iJ3 If Ho 0 r f3 ,Y)Xe (V -' Y2) and the
trajectory will hug the eastern boundary, otherwise, for all
// 0c the trajectory emanating from(Ze,y) must swerve
westward. So along the eastern boundary all layer
thicknesses must be constant to avoid a zonal thermal wind
current a? X=Xe, but in this case a column of fluid flowing
southward along the boundary would be continuously reducing
its potential vorticity whereas in fact its potential
vorticity must be conserved. The resulting trajectory then
enters the fluid interior searching out a potential
vorticity isopleth. If Ho =90 /3 vanishes on xe and columns on
the eastern boundary possess an infinite store of potential
vorticity, in that case alone can they flow parallel to the
eastern boundary at X=xcand conserve potential vorticity.

Thus for/vOC, ?Z)>Ofor allYZV, . The trajectory
emanating from Xe,/z separates the gyre into (at least) two
regions. To the west of 53( V) both layers are in motion
and this motion is determined by the memory of the potential
vorticity, each column of layer 3 has ast slips under the
blanket of layer 2 at y = y2 • East of xjt() no potential
vorticity trajectory from y = yzcan ventilate layer 3. The
shadow region, carved out by'Zjry)in layer 3 is bounded on
the east by eastern wall through which no fluid penetrates
and on the west by the streamline a (,y). The depth of
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layer 3 is /o on both these boundaries. Since this shadowregion within layer 3 is got driven by either surface Ekmanpumping or inflow across xjly)or Xe, Z.e. /j Z j: .

In the unventilated, stagnant shadow region east of
the solution is A 2-,Z)(,],

Luyten, Pedlosky and Stommel showed that the modelpredicts an unventilated region sweeping across the entirelowlatitude North Atlantic from the eastern boundary at the
depth of the 27.40 isopicnal surface.

The total amount of fluid pumped down from the Ekmanlayer was determined by the annual mean Ekman flux. There'have been used the zonally averaged-Ekman flux.

This is theA IN -distribution of
a ZO -- 00 Sverdrup function

2 d, Here I. t, o, ere
which is equivalent

in einning
aQ of the lecture.0 ,, . , -i.

;r0' f o each #' 2U t oo t 0ree

The layer depths for each of the three active layers are
presented as contour plots. (the contour level is 0.051m).

------6o-- - 6[

£0.0

VW% SC' ID' 40' JO' AU' /00 ~ 5 40 ?o, 5b" 3 0, 0
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The feature which is most clear from these plots is the
large region of uniform depth in layer 3 sweeping across
from the subduction point on the eastern wall to the western
boundary of the circulation in which there is no motion.

Lecture 10 Part II

SIMILARITY SOLUTION. A RESTRICTIVE FORM BUT DON'T NEED
POTENTIAL VORTICITY CONSERVATION. (W. R. Young and G.R.
Ierley, T.P.O., 1986, 16, pp. 1884-1900.

The thermocline equations on -plane are:

t3-e J-'26-1 4YO 3-r

~4' ZLY 3e__U

The use of spherical coordinates introduces only some
changes

! 2 ; u -

(p
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/ c~t a,'(2)

where

is the potential vorticity.
The general family of solutions of (1) has the form

Where D is D(x,y) with dimensions of length, & is
dimensionless, L is a length scale.

Some curves of
constant in the
(x,z) plane. Note
thatb*Oas x 0 0 so
that

both the eastern boundary and the abyss are at_ .
This collapse of two conditions in the three-dimensional
(x,y,z) space into one condition in the (y,3) space is
typical of similarity solutions.

At the eastern boundary the density is of the form:

..,P = o,, (.* t+ (- z1e) ") , i , o (4)
Here S and e are introduced separately so that in the
special case m=0 the density at great depth, and at the
eastern boundary, is.(?,-e). The density field in (4) will
be referred to as the "resting stratification".

From (3) and the hydrostatic relation one can get the
density:

(Y + (Pl) (5
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And if (5) is to satisfy the eastern boundary conditions
(4),

More precisely the requirement is the difference between PN
and :)'- must vanish asy-x..as some algebraic power of J
(e.g. J-3). In special cases (m=0,1) it is exponentiallysmall .

From (2) wr = Cf'#2)-fI/97 (5)

From (1), (4), (5) and the horizontal velocities given by
the geostrophic balance

1 -: ~~~ ~ i (51C~iJ -,,+JdxX~

we can get the equation for M:

y..&L71 M1j - f 5  13 (6)

Because M does not depend on x, the first term in curly
brackets on the right-hand side must be a function of y
alone:

(2k

= (~~3) .t'~ ' (X (6')
where A(y) is any function of y.

If M -0 then the horizontal advective terms vanish
identically.
A(y) must be constant, say 1 and

((~~) ~t~) /7.13  (7)

Hence, the vqrtical balance

P E i s c o n v et t( 8 )

It is convenient to rewrite (7) by putting M in the form
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For N one finds

L(10)
and the boundary conditions on N(3 ) are:

l 'io) -oA /v

Then 4",, (#(

0/( /Ifzo) (12)
The first of (11) specifies the strength of the Ekman
pumping at z=0. Eq. (12) was gotten from (5) and (6').
As N0-- with all other external boundaries fixed, one can
anticipate recovering the ideal fluid limit.

The second boundary condition in (11) is that the
surface density is]P., in terms of N density is

so that if the surface density is to be.P0 , the case m=0
must be distinguished. The third condition in (11) is that
deep density field and the density on the eastern boundary,
is given by the resting stratification (see eq.4). This
condition also implies that the horizontal velocities in
(5') also vanish at great depth. If we take a special case,
when m=0 in addition to A=1 and M=0, we can get from (5),
(6'), (8), (13) : Y

C2 P5 (14)

From (5) it follows that the deep upwelling velocity is not
a function of z: // -

The vertical velocity at the surface is r xyq(
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In this case the N equation is

the boundary conditions are: (Numerical solutions Fig. 1, 2,

3)

a) A/(O) -r Al kr, (Ocq)--C,1o I.Z
b) As(o)>-Y ffl:,yo)--0  (1<bc) A4e (0) r- I j== 0 '2,:) _PC,' ~,y )Xl+)(G
C) /V-_.r- < (-4/--) -7

It follows from d) that N ( ) = const, that is 1V,,
independent from3-, sof =const at depth.

In numerical solution as N0-O0 , i.e. Ekman pumping is
very strong, the solution develops an internal boundary
layer at some positiorLf, so the right-hand side of (15) if;
very small everywhere outside this boundary layer.

where *is defined by . r({2A'l)A (17)

The asymptotic 3w- -- eStimation of N-,:

" . / (18)

Heat diffuses out of the bowl through the boundary layer and
into the abyssal region. This diffusive flux is balanced by
a vertical upwelling which is related to the surface Ekman
pumping by Wc= -0.88(4/a)/zw', , where d is "diffusive
depth", d=D/i- and a is an "advective depth" a =T'D and
D=az/3dfo is the vertical scale on which advection and
diffusion can .balance. 2k----____

we o.- l

f.(42-D
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In the case m=l the density at the eastern boundary
increases linearly of depth (5). This is also the
stratification in the abyss, below the influence of surface
conditions

.-- po Cs - (= /e Scil1 S )e)A_k r-. -e/ ) De Dsi,>= A ,'-

The equation for N and the associated boundary conditions
are:

(A/ 0 +V
,vco) _ p-r, > (20)

iv' (0 ) - Y -)o- ( )

(Numerical Solutions Fig 4 and 5)

A simple analysis of (20) shows that i 5 aJ ,
then N must vanish. Consequently the vertical velocity
vanishes at great depth and this implies that the advective
flux of heat also vanishes in abyss. So,WU4=0; u=v=0, 1 =0,
If (No)>>1, then N is small so

O (y' ) !(21)

fir) !
U!
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00

0s. i U0 .5 0 235 10 13 40 05 to L3 2.0 2.5 .10 3 40

0.3 t0 6. i0o . is .3.3 Is 0

Fig 1. Solution of (15), when N0,=O. (a)-In this case the
vertical velocity is zero at the surface and approaches a
constant positive value at great depth. The density field
(more precisely qF 'CY-A (1 46)j )
(b)-There 'is a smooth transition fromp,(surface density) to
the abyssal density .(4)
(c)-The horizontal velocity difference u-v.
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I Q

2. c

; a10 a iC 4. 1 0 '7 o0 70 10 40 10 60 7.0

o io io o o o )o io i o io io ;oo

7.

0

Fig 3. Solution of (15) when No=-5. There is a region of
uniform density extending down to about 2.

There is an internal boundary laver at about Y =3.5
(p=( - 2 Al ) /z f rom (17) , IYO= - r'= V-oIBel1ow t he 1inte rnal1
boundary layer there is the uniform upwelling
regime, when an advective heat flux balances the
diffusive flux from the bowl of warm fluid above =

'1a

a ~ g H nH i~~ni lm H l u
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, 4(. J

C4, 4, 1

Fig 4. Solution (20) with No = -1. There is no density
inversion in this full nonlinear solution. Also in
contrast to the m=0 solution in Fig 1-3 thevertical velocity vanishes in the abyssal region.
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Fig 5. Solution (20) when N,= -10. In this case the
vertical velocity is large enough to create a
11pycnota 1" of densitylp, which extends down to

The u vertical velocity is a linear function of depth
in this region. The pycnostad is bounded below by
an internal boundary layer at about _=z.o (compare
with o r-Jf rom (21)). At still greater depth there is
linearly stratified motionless fluid.
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The flow over San Lorenzo sill
ANTOINE BADAN-DANGON

CICESE

At the southern end of Ballenas Channel, in the Gulf of California, the ridge
that supports San Lorenzo island extends southward for about 25 km and then
bends towards the peninsula of Baja California, forming a sill at 435 m depth,
which divides the southern end of the 1600m deep Ballenas channel from the

Guaymas Basin, itself over 2500 rn deep. Current observations in the lower half
of the water column over the sill indicate a mean inflow that varies from zero at

middepth to about 0.5ms - 1 near the bottom. Tidally induced velocity fluctua-
tions close to 0.5 ms- 1 are independent of depth, and superimposed on the mean
velocity profile so the flow reverses direction regularly at middepth, but seldom

does so near the bottom. This configuration of the flow suggests that the concepts
of the hydraulics of two layer exchange over an oceanic sill are useful in assessing

the consequences of this inflow into Ballenas channel.

Two layer exchange

The essence of the exchange between two basins of different water characteristics
is that it usually takes place in two layers separated by an interface which extends

asymmetrically through the straits from one basin to the other, and conforms to
the requirements of continuity of the flow and conservation of the energy difference

between the two layers (Gill, 1977, 1982; Armi, 1986). When this is the case,
there exists at least one section of hydraulic control of the flow, where the flow is

transitory through a condition of criticality, expressed by the composite Froude

number, which for two layer exchange is

G = F? + F' - (I- r)FF =1, (1)

where F; = u?/g'y is the internal densimetric Froude number, ui is the fluid
velocity, and yj is the thickness of each layer, i = 1,2. The reduced gravity is

g' = (1 - r)g, with r = P1/P2 . In oceanic applications it is usual that(1 - r) < 1,
whence the statement of hydraulic control is simply

G2 = F2 + F= 1. (2)
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The geometry of the straits connecting the two basins is defined by its breadth

b(z), and by the configuration of the bottom -h(z), usually referred to the crest

of the sill h. = 0. The height of the free surface of the ocean above the bottom is

then the sum of the layers thicknesses Yi + Y2 . In nondimensional terms,

b/b , (3)

h' = h/(y1 + Y2)o, (4)

Y, = Yi1(Yl + Y2)., (5)

where b. is a reference breadth, and (Y1 + Y2). is the total water depth at the sill;

since the external Froude number is small, the free surface of the ocean can be

approximated as a rigid lid

y'+y'+ h=1. (6)

The volumetric flow rate in each layer, qi = uiyib, is fixed along X since the flow
is steady and the two layers are immiscible within the straits. Then, q, = ql=q2

is the ratio of the flow rates and q, = 1 expresses the absence of a net barotropic

flow. The velocities and the flow rates are expressed in nondimensional form as
U Ui(6

us = [g(y1+y2). ,' (6)

q! qi
a" (7)

"g'b. (Y1 + Y2).2

The Bernoulli function of each layer can be expressed as

1 2
H, = -u 1 + p19(Y1 + Y2 + h), (8)

21 2

H2 = u2 + p1gyI + p2g(Y2 + h). (9)

The energy difference between the two layers, nondimensionalized by g'P2(Y +

Y2), zthen

2AH' = 0 ' _ 2 + 2y1 - 2, (10)

which is a'conserved quantity in the straits, in the absence of hydraulic jumps or

other dissipative processes.

The internal Froude numbers are the essential expression of the nonlinearity

of the flow, and crucial indicators of hydraulic control in the straits. It is useful
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1
then to express the behavior of the flow in Froude number space F', F2 (Armi,

1986). The layer thicknesses can be written as 1
'F - 13 , (11)

the rigid lid approximation (6) becomes

G+ F 2  = b'(1 _-h,)3/2] (12)

and the energy difference equation (10) can be written

F2 = q, 2F23 + F1 13 - 2 (13)

The solutions to this set of equations have been discussed in detail by Armi (1986),
with particular emphasis on the differences between narrows, where the geometry

controls both layers of the flow directly, and sills, where only the lower layer is

influenced by the topography and the upper layer responds indirectly through

hydraulic requirements. In both cases, there exists a particular solution, which

requires that two control sections bound a central portion of the straits in which

the flow is subcritical; away from these sections the flow is supercritical into each

basin, the supercriticality being attributable to a different layer in each basin. This
solution is named the maximal exchange solution, since it identifies the optimal
rate of exchange for the conditions prescribed in the straits and in the adjacent
basins. The maximal exchange solution for a simple contraction (h(x) = 0) results
in a nondimensional transport q' = 0.25 and equal layer thicknesses y, = y = 0.5

at the sill (Armi and Farmer, 1986). The maximal exchange solution for a sill and
the combination of a sill and a contraction are examined in detail by Farmer and

Armi (1986); they obtain q' = 0.208 and a ratio of the layer thicknesses Y4/'/ =

5/8, and thus, for a given set of conditions, the flow rate over a sill is somewhat

less than through a contraction. The maximal exchange solution is unique for

each geometry, and any other flow configuration is therefore submaximal, as has
been emphasised by Armi and Farmer (1987).

The maximal exchange problem can be posed in a simplified manner once the

requirement of the two control sections is established (Farmer and Armi, 1986;

Bryden and Kinder, 1989). The first control usuaily takes place at the crest of the

1
I
I
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sill (h. = 0); the second control section could be at a neighboring contraction, at
the exit of the straits, or at any other section e, say, sufficiently removed from the
first one for the upper layer to become thin enough to make F2, = 1. Then the
control statements are

U o2 2 U127_ 1(14)

Continuity now requires
uial4 =',y' 1 ,B, (15)

where B = be/ba is the ratio of the widths of the two control sections. The

Bernoulli energy difference (10) is conserved between the two sections:
U 2 2 -- i2

U2  o 1 0 - = 10 Yle, (16)

and, if q, = 1,

U'IV, = -u' 20 Y'20 " (17)

Bryden and Kinder (1989) inscribe the problem in the geometry of a triangular
cross-section, in the fashion of Bormans and Garrett (1989), neglect u12 in favor
of u2 2 and obtain two approximate expressions that relate y' and y',:

5Yo - 1=6yj, (18)

B2/3(l- ylo)' 5 / 3 = 2y1e, (19)

which they solve iteratively to get yjo = .479 and q' = 0.069, for the case of the
straits of Gibraltar. For the sill at San Lorenzo, the cross-sectional area can be
taken to be triangular for the lower layer, but rectangular for the upper layer.

Equation (19) now becomes simply

(1 - y'.) = 2By,,, (20)

and together with (17), assuming B = 1, provides i4o = 1/2, y, = 1/4, and
qj = 1/8. With this particular geometry we have recovered, over a sill, the layer

configuration first proposed by Stommel and Farmer (1953) and by Bryden and
Stommel (1984), which otherwise should correspond to the maximal exchange
solution through a contraction (Armi and Farmer, 1986). The transport, however,

is halved because it is now confined to a lower layer of triangular cross-section.
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Application

Ballenas channel is bounded at its southern end by the sill at San Lorenzo, which

concerns us here, and by a contraction near the northern end of Angel de la Guarda
island, 130 km to the north, where it connects with the shallow northern Gulf of

California. There is ample evidence of intense mixing within the channel. Satellite
images indicate the permanent presence of cool water at the surface, particularly

near the sills; plumes of cool water spread away from the channel, and a well

defined front often forms to the south of the sill at San Lorenzo (Badan-Dangon,

Koblinsky, and Baumgartner, 1985). Tidal flows are prominent in the channel,

and Filloux (1973) has calculated considerable tidal dissipation around the islands.

Often, hydrographic sections suggest the presence of hydraulic jumps in the lee of

the sill, and strong boils appear at the surface of the "1annel in their vicinity. Fu

and Holt (1984) have reported packets of internal soitons that propagate away

from the sills as the flow reverses with each tidal cycle. Such strong mixing acts

to decouple the sill from the contraction, since any net flow through one of them

should appear as a barotropic flow of Ballenas channel water to the other.

These observations also support the idea that the flow must be supercritical at
least during part of the tidal cycie. The current meter observations made over the

sill at San Lorenzo support a mean inflow of 1.36 x 1O m 3s - 1 into the channel,

flowing through a layer which can be estimated to occupy somewhat less than the
lower half the water column. From the theory of two layer exchange, we expect
an equivalent outflow through the upper layer, which removes water warmed at
the surface of the channel. A typical temperature difference between the inflow
and the outflow is about 3 *C. An approximate reduced gravity results

g' - p-'(Ap)g - a(AT)g - 5 x 10-- ms-2 , (21)

where a = 2 x 10- 4 is the coefficient of thermal expansion. By eq. (7), the

nondimensional exchange flow is q ,.- 0.04. Clearly, the exchange over the sill is

submaximal in the mean. Indeed, the speed of loig internal waves on a (virtual)

interface of 3 *C is about

C= i(Y1 Y '2)J ] "12 0.4 ms-1' (21)

much above the average speed of the inflow, 0.2 ms - 1 over the sill. The flow

must then be supercritical only during those portions of the tidal cycle when the
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velocity of the flow surpasses that of the waves. The exchange flow would probably

be better represented by taking into account the strong time dependent variations

in the criticality of the flow.

Nonetheless, the measured inflow has considerable consequences. The channel
operates in reverse fashion to the Mediterranean, and requires the upper layer to

remove the heat (buoyancy) gained at the surface of the channel (Badan-Dangon
and lHendershott, 1985). Of course, it is the powerful stirring by the tides that
mixes the water column inside the channel and provides the energy to drive the
two layer exchange over the sill; the heat gain inside the channel is incidental
to this process. Calculations of the baroclinic pressure from hydrographic obser-
vations across the sill indicate a gradient directed southward in the upper layer,

of about 0.02 m per 10 km of equivalent pressure head, reversing to an equal

but opposite value in the lower 200 m of the water column. These values are

quite comparable with the tidal sea surface slopes proposed by Filloux (1973).
Given that distribution of the currents, the channel exports heat at a rate equal
to 1.35 x I01 oC 3 s-1, or about 5.69 x 1011 W of heat flow for every degree of
temperature difference between the upper and lower layers. This represents, for

the 3 *C difference between inflow and outflow, about 7.2 x 106 jVn7- 2 of heat

deficit through the section of the lower layer over tile sill. If this heat loss were
to be replaced entirely by gains from the atmosphere, it would require close to

525 W.m - 2 of net heat gain through the total surface, 3.25 x i09 M 2
, of Ballenas

channel. This is considerably larger than the heat gain of about 50 WM- 2 that

has been reported for the northern gulf (Lavin and Organista, 1988). Translated

in terms of vertical eddy heat diffusivities inside the channel, such that

6T 62T (23)
W.= K-w6z - 6z 23

holds, suggests values of K of about 20 cm 2 s- 1 for the entire surface of the chan-

nel, or about 104 cm2 s- 1 if all the heat were mixed upwards in the region of the
hydraulic jumps. These are very large values compared to those usually reported

in the open ocean (, 1 cm 2 s-'). Ballenas channel is a portion of the gulf of

California, where very large exchanges with the atmosphere take place.
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THE AGULHAS RETROFLECTION AND RING FORMATION

Eric P. Chassignet

The physical mechanisms of the Agulhas retroflection and associated ring forma-
tion are analysed in detail in a wind-driven numerical model configured in an ideal-
ized South Atlantic-Indian Ocean basin. First, the model retroflection is discussed
through illustration of the Agulhas' vorticity balance among various experiments.
Then, the ring formation process is decribed in terms of its vertical structure and
the associated energy conversions.

A one-layer model demonstration shows that both inertia and internal frhltion
may account for a partial retroflection where a linear, weakly viscous system has
none. When stratification is introduced and baroclinicity increased, the stretching
term exerts an increasing influence. With 40 km resolution, terms included so that
the numerical model conserves potential vorticity become important as well. When
grid resolution is halved, the importance of the extra conserving terms diminishes
and the stretching term exerts an even greater influence. The importance of a
substantial viscous stress curl along the coast of Africa, as provided by the no-
slip condition, is illustrated through comparison with a slippery Africa experiment.
Finally, an experiment with a more realistic South African coastal geometry, giving
a more realistic order of importance to O3v in the separating Agulhas is described.
The planetary vorticity advection term plays a smaller role along the coast. Viscous
effects on the coastal side of the current are still strong, however, and are balanced
primarily by stretching and relative vorticity advection.

Whether rings form in the model and their frequency depend on two primary
factors: the shape of Africa and southward inertia/baroclinicity in the overshooting
Agulhas. The boundary condition on Africa (no-slip/free-slip) and horizontal res-
olution are also important. Experiments in which rings form exhibit considerably
larger values of KM to KE transfer than those in which no rings form. In three of the
experiments, ring formation is studied in detail with the help of instantaneous top
and bottom layer flow patterns and time series energetics. In a low Rossby number
experiment with a rectangular Africa, rings are formed almost continuously, and
basin mode resonance plays a significant role in ring formation. Whether a form
of instability (barotropic or baroclinic) plays an important role as well is unclear.
In two high Rossby number experiments, one with rectangular and the other with
triangular African geometry, basin mode resonance is not a factor, and, it is sug-
gested that ring formation is associated with release of mixed barotropic-baroclinic
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instability.

For more details on the experiments, the reader is referred to Boudra and Chas-
signet (1988), Chassignet and Boudra (1988) and Boudra et al. (1989).
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THE PROPAGATION OF ISOLATED NONLINEAR EDDIES IN A
TWO-LAYER OCEAN

Eric P. Chassignet

In most previous works, the temporal evolution of isolated rings in numerical
models has been described in the framework of a particular approximation such
as quasi-geostrophic or reduced-gravity (11 layer) dynamics (Flierl, 1977, 1984;
McWilliams and Flier, 1979; Nof, 1981, 1983). For a review, the reader is referred to
Flierl (1987). The departure from quasi-geostrophic dynamics in the ring behavior
has been explored in some details by McWilliams et al. (1986) using a balance
equations model (Norton et al., 1986). The standard was the more general and
more complex primitive equations.

Hece, we seek to investigate the validity of the second approximation widely used
to study the evolution of isolated vortices, the reduced gravity model (one active
layer over an infinite one). We concentrate our attention on the following question:
How deep does the lower layer of a two-layer system have to be to have a negligible
influence on the dynamics of the upper layer? In order to study the transition regime
between a finite depth system and the reduced gravity system (infinitely deep second
layer), a series of experiments are performed with a primitive equation, isopycnic
coordinate, two-layer numerical model whose upper-lower layer depth ratio is varied
from 1/5 to 1/1000. We shall then be able to isolate the influence of the lower layer
on the dynamics of the upper one. This type of model (Bleck and Boudra, 1986)
allows the specification of desired initial conditions through the positioning of the
isopycnal surfaces and, in particular, can reproduce the initial conditions of lens-
like eddies; i.e. ones where isopycnals surface. This model is also free of artificial
deterioration of the eddies due to cross-isopycnal numerical diffusion.

The trajectories for both cyclones and anticyclones are presented in Figure 1 as
the ratio R = H 1 /(H 1 + H 2) is varied from 1/5 (realistic oceanic ratio) to 1/1000.
All rings move westward in analogy to a circular Rossby wave (Cushman-Roisin et
al., 1989). They also have a meridional motion (poleward for cyclones and equa-
torward for anticyclones) due to a form drag on the lower layer (Flierl, 1084) and
interactions with the Rossby wave wake in the upper layer. As the thickness of
the lower layer increases, the meridional displacement of the ring decreases due to
a smaller form drag of the lower layer on the upper layer ring. The only factor
remaining important for the meridional displacement is the interaction with the
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Rossby wave wake. If this effect is suppressed, the ring should move purely west-
ward. This is effectively the case with a lens. With initial conditions for the ring
being Gaussian with a maximum interface displacement of 500 meters and with a
radius of maximum velocities equal to 60 kilometers, the influence of the lower layer
began to be negligible when equal to 50 kilometers (upper layer thickness for this
particular case is equal to 1000 meters).

A scaling analysis of the two-layer system (Cushman-Roisin, 1989, personal com-
munication) provides a criterion specifying how deep the lower layer has to be to
justify using the one-layer, reduced gravity model:

H > max (1mnH, LFh L))

where LR and L0 are the radius of deformation and planetary scale defined as

and -, respectively. This criterion agrees with the numerical results for the above
set of parameters. Further analysis will be performed to confirm the robustness
of the criter-on. For more details on the derivation and a discussion of the above
results, the reader is referred to Chassignet et al. (1989).

REFERENCES:

Bleck R. and Boudra D.B. (1986): Wind-driven spin up in eddy-resolving ocean
models formulated in isopycnic and isobaric coordinates. J. Geophys. Res.,
91, 7611-7621.

Chassignet, E.P., D. Nof and B. Cushman-Roisin (1989). The propagation of
isolated nonlinear eddies in a two-layer ocean. To be submitted.

Cushman-Roisin, B., E.P. Chassignet and Benyang Tang (1989): On tlhc wesward
motion of mesoscale eddies. To be submitted.

Flierl, G. (1977): The application of linear quasi-geostrophic dynamics to Gulf
Stream rings. J. Phys. Oceanogr., 7: 365-379.

Flierl, G. (1984): Rossby wave radiation from a strongly nonlinear warm eddy. J.
Phys. Oceanogr., 14: 47-58.

Flierl, G. (1987): Isolated eddy models in geophysics. Ann. Rev. Fluid Mech., 19:
493-530.



I 175

McWilliams, J. and G. Flierl (1970): On the evolution of isolatcd non-linear vor-

tices, with application to Gulf Stream rings. J. Phys. Oceanogr., 9, 0, 1155-
1182.

McWilliams, J., P. Gent, and N. Norton (19S6): The evolution of balanced, low-
mode vortices on the b-plane. J. Phys. Oceanogr., 16: 838-855.

Nsf, D. (1981): On the, -induced movement of isolated baroclinic eddies. J. Phys.

Oceanogr., 11: 1662-1672.

Nof, D. (1983): On the migration of isolated eddies with application to Gulf Stream

rings. J. Mar. Res., 41: 399-425.

Norton, N. J., J. C. McWilliams, P. R. Gent (1986): A numerical model of the Bal-
ance Equations in a periodic domain and an example of balanced turbulence.
J. Comp. Phys., 67, 439-471.

2000 I I I I I

1600

1:1/25  R/,o
200 o'/O

SR:1/, 000A
800 -R/

400 -: 15

0 , 1 1 I I I I I I I t ,

0 400 800 1200 1600 2000
x (in km)
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the depth ratio R is varied
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KIMEMATICS OF OCEANIC SUBDUCTION
Benoit Cushman-Roisin

Florida State University

Introduction

Subduction, or the escape of mixed-layer fluid into the
deeper circulation, and its twin process, entrainment of
underlying stratum in the mixed layer, are mechanisms that couple
mixed-layer dynamics with that of the general circulation. While
mixed-layer modelers usually take the state of the ocean interior
as specified, it is customary for large-scale circulation
theorists to represent the mixed layer as a mere converter of
surface wind stress into vertical pumping. However, recent
theories for the large-scale ocean circulation (Luyten et al.,
1983, and sequels) point to the crucial role played by subduction
in maintaining the permanent thermoline and its associated
circulation. As theories become increasingly refined, the
process of subduction deserves thorough consideration.

The purpose of the present lecture is to elucidate the
kinematics of subduction (and of its counterpart, entrainment) by
inductive reasoning through a series of increasingly more complex
models. Yet, prior to the development of these models, it is
useful first to define the word subduction and second to clarify
the various vertical velocities and volume fluxes that naturally
enter the formalism. Some thoughts and results were discussed by
Stommel (1979), on whose work the present study is largely based,and a more complete text on the following considerations can be
found in Cushman-Roisin (1987).

Definition of subduction and subduction rate

A definition is hereby proposed: Subduction is the process by
which mixed-layer convergence and/or retreat leave formely
turbulent fluid to become part of the underlying stratum. To
quantify subduction, one can state: The subduction rate is the
volume of subducted fluid per unit time and per unit horizontal
area. Subduction rate is thus expressed in meters per second,
and entrainment can be considered as negative subduction.
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Vertical velocities and volume fluxes

Four vertical-velocity-like variables naturally appear in the
study of subduction: 6h/t(the mixed-layer deepening rate). w
(the vertical velocity of a later par'cel at the mixed-iayer
base), Su (the subduction rate, positive for entrainment,
negative for subduction), and Ek (the Ekman pumping velocity,
positive upward). Of course, these quantities are not
independent. Continuity of volume, after neglect of evaporation
and precipitation fluxes, requires:

while a kinematic condition at the mixed-layer base imposes:

A +Uh -t 34 W = (A.-(2)

Now, if one assumes that the flow in the mixed layer is but the
Ekman drift, the first equation becomes:

+ Ek)+ (3)

which implies that the subduction rate (Su) is equal to the Ekman
pumping (Ek) only if (i) precipitation and evaporation are
neglected, (ii) the mixed-layer motion is but the Ekman drift,
and (iii) a time-average is performed over a mixed-layer cycle.

Retention of likely geostrophic currents in the mixed layer
shows that two additional mechanisms can contribute to
subduction. First, since the isobars along which the geostrophic
currents flow do not necessarily parallel the isopleths of h,
convergence (divergence) results, and fluid is passed to
(entrained from) the interior circulation. Second, the beta-
effect induces a divergence of the geostrophic current when it
has a meridional component. Orders of magnitude for these
different processes show that they are expected to be as large as
the Ekman pumping rate, casting doubts on the validity of (3).

Hierarchy of models

The lecture then continued with the presentation of a series of
models analyzing the intermittency of subduction and the
properties of waters subducted at different locations and at
different times.
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Using Beta-Triangle data (25*N - 35*W; Stommel, 1979), the
first, depth-time model shows that the seasonal cycle is divided
into three regimes: effective subduction from late winter until
early spring, temporary subduction until complete mixed-layer
retreat, and recapture of temporarily subducted fluid during
subsequent mixed-layer deepening. Efficienips in time and in
volume can be defined and are estimated to be about 34% and 26%,
respectively, i.e. neither small nor large.

The second, latitude-depth-time model illustrates the effect
of meridional advection. It is found that even if the mix'ed-
layer depth variability is more temporal that lateral, large
spatial variations may occur in the properties of subducted
waters. The third, longitude-latitude-depth-time model only
stresses the previous conclusion.

Steady interior

As a year goes by, water parcels passing at the same point in
the permanent thermocline will have different latitudes and times
of origin, some parcels may have originated in winter further
north while some others, six months later or so, may have
originated in the spring further south. Hence, it is not
guaranteed that the interior stratification will be steady under
variable subduction. Requiring that steadiness be the case
implies a relation between variables of the mixed-layer (depth h,
density e) and of the interior (velocity components u,v and w),
namely

- - + (4)

After retention of only the largest terms, the requirement
simplifies to

Data from the North Atlantic show that the latter relation is
close to being satisfied, leading us to believe that the spatial
and temporal variability of subduction tend to cancel each other
to feed a steady interior. Physically, a parcel subducted in
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late winter when the mixed layer is deep originates further south
than a parcel subducted in the spring when the mixed layer
retreats. Since mixed-layer temperature is lowest-in the winter
but increases southward, both parcels may have identical
temperatures.

Potential-vorticity input

The recent thermocline models (Luyten et al., 1983; and
subsequent articles) point to the importance of potential
vorticity at the time of subduction in determining the large-
scale interior circulation. Here, kinematics considerations are
developed to construct the expression of potential vorticity (PV)
of particles being subducted, The result is:

PV= . vCY " (5)

which combine variables of the mixed layer (h0e) and of the
interior (uv,w) at the base of the mixed layer. If and only if
the oceanic interior is steady, this expression combined with (4)
can be reduced to:

PVI (6)
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Connected Thermal and Transport Anomalies
in the General Circulation

by
William Dewar

Florida State University

Abstract

Two models of the oceanic response to cooling are disciissed.
Both are motivated by a desire to understand the effects of
variable diabatic forcing on the general circulation. The first
model considers an initial value problem in which an initially
resting warm ocean is "slowly" cooled on "broad" scales. The
lower layer in this model is fully active and it is further
argued that the slow and broad scales are relevant to 184C water
formation. The purpose of this model is to illustrate the short
term barotropic and baroclinic response to variability in thermal
forcing.

The second problem addresses the longer-term evolution of finite
amplitude thermocline anomalies (which are assumed to have been
formed by diabatic effects). A "one and three-quarter" layer
model is used, i.e., the lower layer is assumed to be deep, but
not stagnant, and care is taken to compute its evolution.

Based on these models, it is argued that diabatic forcing can
result in local modifications of the Sverdrup constraint and that
mass transport evolves through at least three distinct phases.
The first short-term ocean response to cooling is the radiation
of eastward moving barotropic planetary waves which leave the
Sverdrup transport and the planetary geostrophic wave equation
(PGWE) in its wake. Local Sverdrup dynamics and the PGWE
dominate the second phase of evolution. The last phase occurs as
the fronts obtain deformation radius length scales, and the
tendency for the system to produce coherent structures results in
persistent, spreading regions of anomalous transport. Global
measures of'the mass transport, however, collapse back to the
classic Sverdrup constraint. Implications for the generation of
barotropic and baroclinic variability are discussed.
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LOCALIZED STRUCTURES
GENERATED BY SUBCRITICAL INSTABILITIES

Stephan Fauve and Olivier Thual
Ecole Normal SuperieuLe

Localized structures are widely observed in fluid flows.
Well known examples are the local regions of turbulent
motion surrounded by laminar flow, which develop in many
open-flow experiments (pipe-flow, channel-flow, boundary
layers) [1]. More recently, spatially localized standing
waves have been observed on a horizontal layer of fluid
submitted to vertical vibrations [2], and convection in
binary fluid mixtures displayed localized travelling waves
[3]. In all cases the possible origin of localized
structures lies in the existence of a subcritical
instability, which implies that two stable homogeneous
states coexist in an interval range of the control
parameter. The localized structure then consists of a small
region in the bifurcated state surrounded by the basic
state. When the amplitude equation that describes the
bifurcation, admits a lyapounov functional, i.e. when there
exists a free energy to minimize, a localized structure is
not stable; it shrinks or expands. We have shown
numerically in the case of a subcritical Hopf bifurcation
that the stability of the localized structure is a non-
variational effect that traces back to the coupling between
the amplitude and the phase of the wave complex amplitude
[4]. In slightly dissipative systems, we have shown that
these localized structures can be computed perturbatively;
the leading order effect of dissipative terms is just to
select the size of the structure among a family of scale
invariant solitons [5].
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ARNOLD'S THEOREM AND THE INSTABILITY OF

ELLIPTICAL VORTICES

Glenn R. Flierl
Center for Meteorology and Physical Oceanography

MIT

Arnold's Theorem

When a conserved quantity has a local extremum for an equilibrium state of the
system, the system is stable to perturbations. If the gradients with respect to variations in
the system state vanish, but the second variations are not definite in sign, the system may
be unstable. Frequently, however, the gradient of the energy with respect to deviations from
the equilibrium are not zero, and, in order to apply similar arguments, we must construct a
different conserved quantity which does have vanishing gradients. This invariant, A, is then
useful in determining the stability: the state is stable if the second variations are definite
in sign. For fluids, the invariant is some combination of the energy and enstrophy and
perhaps other conserved quantities. Treating the vorticity as piecewise constant permits
us to define systematically the possible isovortical perturbations to the system. Thus we
can attempt to determine if A is positive for all possible weak perturbations or is negative
definite. In either case, the flow is then stable.

Consider the linearized analog to A. If we linearize the dynamics, we find that the
perturbation energy is no longer conserved (in the case when the gradient of energy did
not vanish.) and thus it cannot serve as a suitable quadratic invariant. But the analog to
the Arnold invariant is still conserved under the linearize dynamics, so that we can still use
the approach above to explore stability to linearized displacements, For quasi- geostrophic
motions, we have A = IV&Ip2 + (f 2/N 2)4,1 2 + q2/(de/dV,5).

For flows with piecewise constant potential vorticity, we can rewrite the dynamics to
give equations for the evolution of the boundaries between various regions. There are a
number of equilibrium states known for different dynamics and symmetries. We can write 1
the perturbation equations in a fairly simple form if we introduce as coordinates V and a
tangential coordinate 9 proportional to the travel time along the boundary. We can then
naturally define the displacement of a contour 7(s, t). We can ensure that the perturbed I
flow has the same are within contours and thus conserves potential vorticity; we can also

define a complete set of functions to represent the 77 field. The stability problem reduces
to a set of ODE's relating the changes in the amplitudes. We can also show there is a
quadratic form (in the amplitude variables) corresponding to A.

Sufficiency

When the basic state is sufficently symmetric, the sine and cosine modes in the ex-
pansion of 77 are decoupled. We then have two equations I

At = -JSB
Bt = JCA
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where the J matrix is diagonal and the S and C matrices are symmetric. The invariant is

A = ATCA + BTSB

We can show that when both of the S and C matrices are positive definite (meaning
all eigenvalues of each are positive), the system is stable. Likewise, if both are negative
definite, the invariant is elliptical and perturbations cannot grow; also, we can prove di-
rectly that the eigenfrequencies are real. We have furthermore proved that if one matrix is
positive definite (or negative definite) and the other is indefinite, then the flow is unstable.
This represents an extension of Arnold's theorem to show that the possibility of instability
can be realized for some configurations - the necessary condition is sufficient. However,
this is not always true, since we have not proved the flow is unstable when both matrices
are indefinite. In fact, the elliptical case seems to be a counter example.

Stability of the Kirchhoff Vortex

For a barotropic elliptical vortex with uniform vorticity inside, rotating at a constant
rate, the stability depends on the aspect ratio (unstable for a value < 1/3) when the
motions are barotropic. Barocinic (but quasi-geostrophic) perturbations have not been
studied previously. We have calculated the matrices as functions of the aspect ratio and
the baroclinicity of the perturbation. We have used three cases : (a) azimuthal mode 1
only, (b) azimuthal mode 3 only, and (c) azimuthal modes 1 and 3 together. The results
are essentially the same: the vortex is unstable to mode 3 when the aspect ratio is less
than a number depending on the vertical wavenumber m but which is always less than
1/3 and decreases as m increases. Mode 1 perturbations, which cause the axis of the
vortex to tilt with height, can be unstable even when the vortex is almost circular if the
vertical wavenumber is appropriately chosen. Thus we find an instability to barocinic
perturbations in regions where the vortex is stable to barotropic modes.

When we truncate to only one mode, the Arnold condition becomes both necessary
and sufficient. But when we consider a two mode truncation, the condition is necessary
and sufficient on the large vertical wavenumber side of the satbility boundary, but not on
the small wavenumber side.
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FROST HEAVE
Andrew C. Fowler
Oxford University

In secondary frost heave, a frozen soil surface 'heaves'
upwards due to the suction of groundwater towards the freezing
front. The phenomenon can cause spectacular damage to roads and
buildings, and is of immense economic importance as a result.
Frost heave is not primarily due to expankision of water -n
freezing, but arises through a capillary suction effect at the
freezing front, whereby groundwater is sucked upwards towards it.
In secondary frost heave, a thin frozen fringe exists at the
freezing front, consisting of a region (mush) of co-existing ice,
water and soil, analogous to dendritic mushes in alloy
solidification (see GFD 1984). Within this fringe, the
overburden pressure is partitioned between the effective pressure
It.- (that transmitted through the soil skeleton) and the pore
pressure, which itself is partitioned between the water pressure
t. and the ice pressure 1 . In Miller's theory (1980), a

capillary/adsorption relation exists between #and ,. i.e.,
+- w = f() , where W is water fraction. At the top of the
fringe, ice lenses exist parallel to the freezing front. At the
base of a lens, +Z = P (overburden), so that +v= -f(W) there,
whereas below the fringe, where +, is the ambient
groundwater pore pressure. The resultant pressure difference
drives water through the fringe towards the lowest lens. Since W
will vary through the fringe, so will . , as well as + , and
it can occur that the effective pressure G 0 at some point
within the fringe. If this happens, then there is no pressure to
keep the soil coherent, and upwelling water can force the soil
apart, more or less as a (transverse) fracture; in this way, a
new lens is formed within the fringe, and as freezing progresses,
a sequence of such lenses is formed.

A realistic model to describe and predict the phenomenon is
complicated. The fringe model, for example, is that for a two-
phase reactive continuum in a porous medium, and involves four
partial differential equations and five algebraic constitutive
relations. Such a model is presented by O'Neill and Miller
(1985). It is possible to simplify dramatically this model,
based on four realistic and major approximations:

(i) gravity is small;
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(ii) heat advection is small (small Peclet numbers);
(iii) the fringe is thin;
(iv) the permeability -AL within the fringe is a function

of W, &c Wy, and the exponent Yis large (e.g.r-I ).
With these simplifications, the model collapses to one
of steady heat conduction with two free boundary
conditions each of which is determined by a
generalized Stefan condition.

The one-dimensional heave problem can in fact be reduced to
two linear first order differential equations!! Future oork will

compare these analytic results in detail with G'Neili and

Miller's computed results, and with experimental tests. In
conjunction with W. B. Krantz at Boulder, we aim to use a two-
dimensional instability theory to explain the formation of

patterned ground in permafrost regions. Some of the work

reported here is published by Fowler (1989), and there is also a

preprint by Fowler and Krantz.
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Critical Tests of Fossil Turbulence in the Ocean
by

Carl H. Gibson
University of California at San Diego

San Diego, CA 92093
(619) 534-3184

ABSTRACT
Critical field experiments are needed to distinguish between two quite different categories of
physical models for the evolution of stratified ocean turbulence and mixing; that is, fossil
turbulence models where active turbulence exists for only the initial stages and a small portion of
the lifetime of the scrambled fossil microstructure it produces, and non-fossil turbulence models
with no fossil turbulence regime where microstructure is created and decays in continuous
equilibrium with the turbulence. Turbulence is defined as a random, eddy-like state of fluid motion
where the Reynolds, Froude and Rossby numbers of the eddies exceed critical values. For a flow
to be turbulent the inertial-vortex forces of the eddies must exceed the constraining forces of
viscosity, buoyancy and rotation. All other motions are by definition nonturbulent. Fossil
turbulence is a fluctuation in any flow or physical field produced by turbulence that persists after
the flow ceases to be turbulent at the scale of the fluctuation. Fossil turbulence is easy to observe
in the laboratory where patches of stratified turbulence always leave fossil turbulence patches (or
relics, or footprints, or remnants) of scrambled microstructure that persist long after the flow
becomes nonturbulent, or in the atmosphere where persistent contrails of jet aircraft may be seen.
The first critical experiment is to establish whether turbulence ever leaves such fossil turbulence
remnants in the ocean. If one oceanic fossil of turbulence is observed, the hypothesis (presently
accepted by many oceanographers) fails that oceanic turbulence does not leave fossils. Further
critical experiments would then be needed to establish whether typical sources, or perhaps all
sources, of oceanic turbulence leave fossils, and whether the evolution of stratified, rotating
oceanic turbulence and fossil turbulence is qualitatively and quantitatively the same as fossil
turbulence in the laboratory, as predicted by fossil turbulence theory. A fossil turbulence
interpretation of present ocean microstructure data suggests that turbulence and mixing in many
oceanic layers has been vastly undersampled and that large undersampling errors (underestimates)
of mean dissipation rates and diffusivities have resulted from taking a non-fossil turbulence
interpretation. Present ocean microstructure (and mesostructure for 2D fossil turbulence) sampling
and data analysis techniques should be modified to avoid such errors and to take full advantage of
the information preserved by fossil turbulence. Towed body rather than dropsonde sampling
should be used to increase microstructure data sets to more appropriate sizes and to sample the
horizontal mesostructure which may be producing it. More efficient techniques of statistical
inference should be developed ("hydropaleontology") that take full advantage of the information
preserved by the fossil turbulence.

III
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OSCILLATORY FLOW OVER TOPOGRAPEY IN A RAPIDLY ROTATING FLUID

J. E. Hart

Department of Astrophysical, Planetary and Atmospheric Sciences
University of Colorado

Boulder, CO 80309

June 28, 1989

Quasi-geostrophic flow in a cylinder with both a polar 8-effect and
zonally varying topography is considered. The rotation rate of the tank. is
modulated about its mean value 1o in an amount 6' with freqency W. This
modulation produces a solid body rotation that sinusoidally sloshes back and
forth over the mountains. Linear and nonlinear theories are presented and
compared with laboratory experiments. The main features of the theoretical
problem are that a very substantial retrograde mean zonal current is generated
in the interaction between the sloshing flow and the topography on the 8-plane.
This mean flow is largest when the external parameters are sub-resonant so
that the effective 8-parameter is lower than that required for a frequency
resonance between the sinusoidal forcing and the frequency of a linear free
Rossby wave with a spatial structure equal to that of the topography. The
predicted nonlinear Eulerian flows are periodic, not chaotic, although multiple
equilibria can occur for realistic laboratory parameter values. However, the
LaGrangian particle paths for fluid columns in this barotropic flow are chaotic
near the nonlinear resonance. The theoretical results are shown to be in
agreement with laboratory experiments.

The bottom topography is taken to be that of a free mode of the linear
wave problem,

Hb* = Hb Jn(anr)cos(ne), (1)

where J is a Bessel function of index n, r is the non-dimensional radius (with
scale L, 8 the azimuthal (zonal) angle, and an is the total wavenumber of the
topography. It is assumed that Jn(an)-0 so that the topography vanishes at the
outer sidewall.

When the tank rotates at an almost constant value of Q the free surface
deforms into a parabola given by

= 4r2L2  (2)2g

This parabolic distribution of height gives us an equivalent topographic
B-effect. In view of the sloshing induced by the modulation of the basic
rotation of the tank, the geostrophic pressure is written as,



188 p - L sin(t) + *(r,e,t) (3)
4c

With (1)-(3) the governing quasi-geostrophic vorticity equation including
an Ekman layer at the bottom becomes,

av 2 * as +ahb
__ + 8'(- + n'sin(t)- ) + OV2* + S'sin(t) -)-

3t ae ae as

+J(o,v 2  + r'hb) = 0 (4)

The parameters in this equation are:

HT 2L2

8' = 
- , where HT - , (5a)

g -

6'Hb (5b)

6',

'1' 2 (5c)

Hb
r =- , (Sd)

eD

hb - Jn(unr)cos(ne) . (5e)

Q is the bottom damping parameter and c w /29o is the Rossby number based on
the forcing frequency w. The important parameters are S', which reflects the
magnitude of the mountain forcing, and S' , which is the nondimensional
(w.r.t.frequency) B-effect.

The linear problem for topographic wave excitation leads to a first order
equation for the complex amplitude F which can be written as

dF + QF - iSF(i - n'sin(t)) - i S sin(t), (6)
dt

where

nS'-= an, (7a)

= n • (7b)an2

The two important features of the linear solution are that 1) the
solution is resonant for all integer values of 8, and 2) that F has a non-zero
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X has an average means that there is a topographic vortex, in the time-mean,
wich is not in phase with the topography. This phase shifted mountain vortex
is responsible for generating a mean zonal retrograde (westward) jet.

The linear theory predicts large amplitudes near the 8=j=1,2,3,4...
resonances. However, the resonances can be moved when nonlinear effects are
included. This problem can be analyzed by studying a weakly nonlinear expansion
that focuses on the competition between nonlinearity, friction, and off-
resonance in determining the slow-time evolution of the amplitude of a free
resonant solution to (6) with Q-0.

The amplitude equations for the long-time evolution of the near-resonant
mode have the form:

d--+A U ) X (8)( + P ) Uc(') - U) , (9)
dr'

(d. + P ) X ) - (6 - U) X s , (9)

d(tT'- ) Xs(0') = -(& - U) Xc -1l (0

d-r'S

where U is the amplitude of the zonal jet, and Xc and Xs are the amplitudes of
the in phase and out-of-phase components of the wave.

Here, B = j + a and

Q (11)
S2/3(bnabs(Ij )2)1/3

6 =(12)
S2/3(bnabs(Ij )2)1/

3

I. just depends on the resonance index J. The values of the wave-mean
interaction integrals are evaluated numerically. The important result is that
bn is negative for n1l topography, but are positive for all n>1.

The steady solutions for the amplitudes of the mean jet and the periodic
waves are given by

12U + (6 - U)2U + I - 0. (13)

From (13) it is seen that the maximum amplitude of the retrograde mean
current is obtained when 6 - - P-2 and has a value U - -;- This
relationship giving I'he biggest mean zonal velocity translates into

bn J(jrl,) 2 S2

&max m - n 2a - (14)

suggesting that large mean Eulerian currents would be obtained on the
subresonant side of the J'th resonances for n>l
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190 Two experimental tests of this theory, and an improved version which

contains an additional quenching term -cU on the RHS of (10) that reflects the
generation of Rossby waves by the cross-isobath flow of the wave-excited zonal
jet, are given. The appearence of chaotic parcel trajectories in the theory when
B=0.65 as well as a maximum in the Eulerian retrograde jet at this nonlinear
resonance value are both reproduced in an experiment with a water depth of
10cm, radius 22cm, topography amplitude 1cm (peak to valley), n-2, Qo-3, and a
modulation amplitude of one percent.

I
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The Modulated Complex Lorenz Equations: 191

Baroclinic Instability with Seasonal Forcing on the $-plane

J. E. Hart

Dept. of Astrophysical, Planetary, and Atmospheric Sciences
University of Colorado

Boulder, CO 80309

We consider the simplest model which can address the question of
the effect of seasonally variable zonal winds (or currents) on finite-
amplitude baroclinic instabilies. How do nonlinear wave-interactions and
direct oscillatory zonal flow forcing compete to determine the finite-
amplitude dynamics?

The standard two-layer quasi-geostrophic potential vorticity
equations, which include Ekman-layer damping at rigid top and bottom
surfaces and along the immiscible interface, can be written as

(a + J(PjI ))(vP + F(-I)-J(Pi - P2) + Br2 ) -

at

-q(V2Pj) - 0.5q(7 2 p2 - V2p,)(-)j , (1)

where Pj, with j-l or 2, are the geostrophic stream-functions in the two
layers and J is the Jacobian advection operator. The parameters are the
rotational Froude number

Fn 2 2(2)

gD(p 2- P1)
a friction parameter

q = -- ,(3)
q Dw

and a dimensionless planetary vorticity gradiant parameter 8.
The flow is imagined to take place in a cylinder of radius L that

is rotating at a basic rate a. For simplicity we consider that the layer
depths D and the viscosities v are same in each layer. The specific
driving mechanism is not detailed here, but could consist of a lid,
differentially rotating at rate w, as is commonly used in laboratory
experiments (e.g. Hart, 1972). The timescale is w-1, the horizontal
length scale is L and the velocity scale is Lw. The lid-forcing terms
are not explicitly included in (1) but would, for the laboratory case,
appear on the right-hand-sides of (1) as Ekman suction velocities driven
by the lid vorticity.

A basic flow consisting of solid rotation in both the upper and
lower layers, but with a vertical shear in the azimuthal velocity v of
magnitude 2wr across the two layers, is set up. We analyze the finite-
amplitude instability process by making a Galerkin expansion of the two
P fields using the eigenfunctions of the linear stability problem. This
procedure yields amplitude equations which are similar to those derived
by a more formal weakly-nonlinear analysis.
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Split the pressure fields up into their barotropic and baroclinic

parts. Then expand them in terms of the linear eigenfunctions (i.e.
Bessel functions) and the lowest meanflow-correction that is generated
by both the wave self-interaction and the externally imposed seasonal
forcing. Write

X( t')
P1 + P, I Qb- - Jn(ar)el 0  (4)

and

P2 - P - r + b(t) QJn(r)eine Qb 2Z(t')J*(alr) (5)
h n2e

with
(Qb + Q')a 2t (

2F + a2

X(t') is represents the barotropic part of the unstable wave. The,
baroclinic part is Y(t'), and the correction to the mean flow has
amplitude Z(t'). The the frictional terms are divided into rigid boundary
damping Qb - q and interfacial damping Q'- q. The scaling factors h and
e are easily determined (Hart, 1986), and do not appear in the amplitude
equations describing the state of the wave-mean system (although they do
appear in the dimensional amplitudes of the various components of the
flow).

When the expansions are substituted into the vorticity equations, a
projection onto the expansion set itself leads to a set of five nonlinear
amplitude equations. These are:

dX = (Y - X) + US X (7)

dt' I-A

dY
-- = (R - Z - E R sin (yt'))X-Y + iBY , (8)
dZ'

dZ Re (X* Y) - b Z 
(9)

dt'

The parameters occuring in these equations are a "Prandtl number"

Qb 2F + a2a =-. (10)

Qb + Q' a
a "Rayleigh number"

R o An2 
(11)

Qb2

and an aspect ratio

b ' 2F + a2  (b (12)
a2 2F + a,
2F - a(

2F + a2
is the inviscid supercriticality. If Q is small, the critical neutral
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curve is approximately Fc - a2/2 . Thus A measures the degree of
instability. The amplitude of the external seasonal forcing is c and its
dimensionless frequency is y. The dimensional values scale with 6WL and
the (small) viscous spinup frequency, respectively (Hart, 1989).

Equations (7)-(9) reduce to the classical "Lorenz Equations"
(Lorenz, 1963) when 8 and £ are zero, and to a form of the "Complex
Lorenz Equations" (Gibbon and McGuiness, 1982) when £ = 0. When a is near
one and e - 0, both tend to be non-chaotic. Eqn. (10) shows that small
a's are the rule for near-critical flows, especially if interfacial
friction is included (see (10)).

If 8 is 0(1), then as R is increased (with c=O and keeping A and Q
small) the flow first becomes unstable to a travelling baroclinic wave
which equilibrates to a constant amplitude. The phase trajectory of Xr
and Yr is a limit cycle (Fig la) that reflects the phase propagation.
The amplitude of the wave and of the mean flow correction Z are
constant in time. At larger R a bifurcation to periodic motion in Z
occurs. The oscillation in Z represents an amplitude vacillation, while
the associated quasi-periodic behavior in X and Y reflects a combination
of the amplitude vacillation and the unrelated phase propagation
frequency. Although the baroclinic time series looks complicated (Fig.
Ib) it is just quasi-periodic, while that of the mean flow correction
(Fig. Ic) is periodic (with period-2 for the parameters illustrated).

As e is raised above zero, the two-looped limit cycle
corresponding to Fig. ic becomes a two-looped torus. A cross-section
through this torus yields a Poincare section as shown in Fig. 2a. This
is constructed in the manner used by Lorenz (1963) where successive
maxima of Z are plotted against the previous maxima. As e is increased
this torus folds and ultimately fractures. Two stages of this process
are illustrated in Figs. 2b and 2c. At larger e, corresponding to about
a 6 percent fluctuation in the applied zonal shear, the motion becomes
highly chaotic but with irregular winters as illustrated in Fig. 3. Weak
seasonality can have a profound effect on the nonlinear dynamics of
baroclinic waves, leading to chaos where none exists with steady forcing,
and with intermittent behavior that is reflected in interseasonal
variability. In this numerical example, y is much smaller than the

iriternal dynamical frequency /R . In spite of these disparate

timescales, a small amount of seasonal forcing is strongly destabilizing.
In the f-plane case a similar scenario is found. There, the large-R

behavior of the amplitude equations consists of almost-adiabatic (stable)
symmetric and (unstable) asymmetric limit cycles. The seasonal forcing
causes the adiabatic invariants to drift on the slow timescale towards a
homoclinic orbit which divides the two types of inviscid cycle. When
this happens, the flow near the origin leads to sensitive dependence on
initial conditions (Hart, 1989). On the 8-plane we speculate that
seasonal effect similarly cause a breakdown of the adiabatic tori that
occur in the c-0 complex Lorenz equations (Fowler, et. al., 1984).
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THE FLUID MECHANICS OF SOLIDIFICATION

Herbert E. Huppert
D.A.M.T.P.

University of Cambridge
Silver Street, Cambridge CB3 9EW

Fluid mechanics can play a fundamental role in the phase
transitions that accompany solidification. This is because
when a liquid of two or more components solidifies, the
composition of the solid product generally differs from that
of the original liquid. For example, salty water in the
polar oceans freezes to form almost pure ice. The
difference in composition between liquid and solid implies
that the composition of the liquid in the neighbourhood of
the solidification front can be different from that further
away. This difference in composition is generally
associated with a difference in density, which can drive
fluid motions, transport both heat and mass convectively and
alter the rate and maybe even the mode of the solidification
processes. The aim of the lecture was to systematically
review some of the fundamental concepts in this subject.

My investigations in this field commenced with the
consideration of the principles involved in cooling an
initially homogeneous two-component melt at a single
horizontal boundary (Huppert & Worster 1985). We identified
six different flow regimes dependent upon whether the
cooling takes place at an upper or lower boundary to the
melt and whether the density of the fluid released on
solidification is the same, greater or less than that of the
melt. This differentiation between the flow regimes is one
of the major concepts upon which the talk was based.

Consider initially the cooling from below of a liquid
whose solidified product is compositionally identical. This
is a classical Stefan problem (Hill 1987), a problem which
has no fluid mechanical ingredient. The influence of an
unstable thermal field that results from cooling such a
fluid from above has been extensively studied by Turner,
Huppert & Sparks (1986). Compositional effects can be
incorporated by considering the cooling and crystallizing
from below of a liquid that releases fluid of greater
density when solidifying. The moving interface between
fluid and solid is generally unstable, which leads to the
formation of a mushy layer. Huppert & Worster (1985)
describe a simple theoretical model for this mushy layer,
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which we derived in Walsh Cottage in 1984, and we then
demonstrated that predictions of the model agree well with
data from our laboratory experiments.

This theoretical model was extended by Kerr, Woods,
Worster & Huppert (1989) in a study of the solidification by
cooling from above a liquid which releases less dense
fluid. Assuming first that solidification occurs at
thermodynamic equilibrium and that the cooling temperature
exceeds the eutectic temperature, we determined the rate of
growth of the mushy layer that forms on the roof. The
agreement between the theoretical predictions and the
laboratory data was good, but not perfect. The agreement
was improved by incorporating non-equilibrium effects into
the model by specifying a relationship between the rate of
growth of the mushy layer and the non-equilibrium
undercooling at the interface between mush and liquid.

Lowering the cooling temperature below the eutectic
temperature can lead to compositional stratification in the
solid (Woods & Huppert 1989). In addition, cooling at the
top of a container can lead to solidification at the base -
a result relevant to the cooling of a large magma chamber,
or storage chamber of liquid rock, from above. Global two-
dimensional effects, which result from cooling at either a
vertical or a sloping wall (Huppert, Sparks, Wilson &
Hallworth 1986) were also discussed.

The talk was very loosely based on the material
presented in Huppert (1990), which was written in honour of
George Batchelor's seventieth birthday.
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A BIASED SAMPLE OF NUMERICAL I
MODELS OF THE LARGE SCALEI ICIRCULATION, I & II

Glenn R. lerley1

Fluids Research Oriented Group, Department of Mathematical Sciences,
Michigan Technological University, Houghton, Michigan 49931 I

PART I

Numerical models of the large scale circulation seems usefully divided
into two categories: "gedanken" experiments and engineering compu-
tations. The former can serve as a testing ground for hypothesized I
mechanism, complementing the role of laboratory experiment, and sug-
gesting new conjectures while the latter attempt to fit the large scale
circulation as well as can be done with our present incomplete knowl-
edge subject always to computational limits imposed by the current
technology. Representative of the "gedanken" experiments are the early
computations in quasigeostrophic models by Bryan (1963) and Veronis
(1966) which played a significant role in developing our understanding I
of and intuition about the role of nonlinearity in modifying the earlier
(analytic) linear theories of the circulation.

One hypothesis which we (Bill Young, Joe Pedlosky and I) are
examining by numerical means is the suggestion that quasigeostrophic
dynamics can provide a reasonable zeroth order description of the large
scale circulation in the limit of vanishing viscosity. The answer is not
yet clear, but at present I believe it to be no. The large scale circulation I
of the ocean is very nearly inviscid. What determines its structure and

amplitude as we require more than an austauch coefficient description of
the physics seems to depend quite sensitively upon the precise paths by
which vorticity is ultimately dissipated. Quasigeostrophic models seem
to rely upon a recirculation region spun up to an implausible degree.
Perhaps ageostrophic instability provides a far more potent mechanism

I

I I I
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for transferring potential vorticity through the system where it may
ultimately be dissipa.ted at the sidewall boundaries.

A multilayer QG model has been run at NCAR using Laplacian
friction with a coefficient as small as 10 m'2 /sec. As seen in a movie
shown in the lecture, premature boundary layer separation is a char-
acteristic feature of the turbulent state. An interesting comparison is
the barotropic model computation by Panteleev (1985) which appears
similar in character but with even more intense recirculation. The dy-
nanuics of this separation is the subject of current work. Variability
in the latitude of separation appears to be induced by the collision of
a westward moving cyclonic eddy with the boundary layer. Curiously,
Boland and Church (1981) see evidence for a similar event in maps of
dynamic topography for the East Australia Current.

When run with slippery boundary conditions (rather than the no-
slip EW conditions in the runs described above), a double gyre run with
no forcing in the northern gyre produces a result entirely reminscent
of Harrison and Stalos (1982) tempting one to believe that stress-free
boundary conditions favor an asymptotic state substantially similar to
that for models with only bottom drag. No-slip boundaries produce
a more complex result which, however, retains a substantially linear
relation between potential vorticity and streamfunction even instanta-
neously.

Following the main part of the lecture some brief remarks on spec-
tral (Chebyshev) methods, their advantages and disadvantages, were
delivered to those of a distinctly numerical bent.

PART II

The paper by Schmitz & Holland (1986) provides one of the most se-
rious points of comparison between observation and quasigeostrophic
numerical model results. An eight layer model with 20 km grid res-
olution in a 3600 km (EW) by 2800 km (NS) rectangular basin was
used. Bottom (second order) and biharmonic (sixth order) frictional
terms provided damping. As the wind stress was varied, two statis-
tically steady equilibrium states of 20 Sverdrups and 30 Sverdrups of
wind-driven transport in a single gyre were found to provide a reason-
able fit to the zonal distribution of abyssal kinetic energy under the jet
axes of the Kuroshio and Gulf Stream respectively. Tested then were
other statistics about the spatial and temporal structure in the vicinity
of the jets. Surprisingly for a model lacking any ageostrophic instabil-
ity mechanisms, the vertical distribution of kinetic energy agreed fairly
well with observation even when decomposed into short, mesoscale, and
secular frequency bands. The mean vertical shear was also in accord
with observation, but the absolute zonal velocity was overestimated in
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the numerical model by approximately 12 cm/sec. The second major
discrepancy was the zonal distribution of eddy kinetic energy in the up-
per layer in the North Atlantic which peaks several hundred kilometers
closer to the point of separation than at depth. The numerical model
showed no such progression. The absence of topography in the latter
may account for this discrepancy.

The Semtner & Chervin (1988) paper describes a global eddy-
resolving model which traces its ancestry back to the Bryan Cox 1969
model. The present version is highly vectorized and permits 1/2 degree
resolution with 20 layers in the vertical to be evolved at a cost of about
50 CPU hours per model year. Mainframe improvements are expected
to permit 1/8 degree resolution with 40 layers in the vertical to be run
for about the same cost sometime in the mid.1990's. An efficient spinup
of the model constraining all levels to relax to interpolated (T.S) values
from the Levitus data set was followed by two experiments in which
the thermocline was free to evolve constrained by steady surface forc-
ing and the abyssal layer relaxed to the Levitus data with a three year
time constant. The principle distinction between the two experiments
was to dramatize the difference between Laplacian (fourth order) and
biharnionic (sLoth order) friction. The latter induces substantial eddy
activity which doubles the mean kinetic energy.

While at some level the results may be said to be "realistic" in
resembling oceanic patterns of circulation, a central issue is what can
be learned from such "engineering" models by way of advancing our de-
ductive understanding of the large scale circulation? Goodness of fit is
as yet ill-defined and rarely discussed in evaluating the utility of prim-
itive equation models in-.this capacity. More obvious is their plausible
applicability as a strictly interpolatory tool in conjunction with sophis-
ticated methods of data assimilation. The Semtner & Chervin model
has a Gulf Stream which separates north of Hatteras, about halfway
to Long Island. Is this a significant error? They suggest the remedy
may lie in the crude model treatment of the Greenland-Norwegian Sea.
This may well be, but equally, it seems to me, some dynamic aspects
of the large scale circulation in such numerical models must ultimately
fail to give satisfactory agreement with observation even at much finer
resolutign and much lower viscosities as long as basic issues such as the
asymptotic behavior of various parameterizations of vorticity dissipation
remain unclear. For this reason, in my view, complementary studies of I
process models in simplified settings, such as quasigeostrophic dynamics
will continue to be a crucial adjunct in assessing the validity of the more
complex global model results. I believe progress in oceanography now is
at least as much limited by our inadequate understanding of processes
which are easily resolved by present computers as it is by inadequate

I
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computational resources for even more highly resolved global climate
models.

The second half of this lecture was given over to two numerical top-
ics. A discussion of the method of cyclic reduction for rapid solution of

elliptic problems (for which see the discussion in Press, et. al 1988.) was
followed by an outline of work by Pares-Sierra & Vallis (1989). Tie lat-

ter describes a fast solver for nonseparable elliptic problems in irregular
domains using an iterative capacitance matrix method. Timing tests of
two algorithms presented show substantial gains in performance (a fac-

tor of 3-5 times faster) over optimal SOR algorithms. For a restricted
class of nonseparable problems, a preconditioner leads to yet another
factor of two in performance, however for problems with strong spatial
variation in the diffusion coefficient, the method fails to converge.

Literature Cited
Boland, F. M., Church, J. A., 1981. The direct method for the solution of non-

East Australia current 1978. Deep-Sea separable elliptic equations in irregu-
Res. 28A:937-57 lar domains, submitted to J. Comput.

Bryan, K. 1963. A numerical investiga- Phys.
tion of a nonlinear model of a wind- Press, W. H., Flannery, B. P., Teukolsky,
driven ocean. J. Atm. Sci. 20:594-606 S.A., Vetterling, W. T.. 1986. Numeri-

tlaidvgel. D. B., Wilkin, J. L., Young, cal Recipes: The Art ofScientiic CX rn-
R.. 1988. A semi-spectral primitive puting. New York: Cambridg- Uruver-
equation ocean circulation model using sity Press. 818 pp.
vertical sigma and orthogonal curvilin- Schmitz, IV. J., Jr., Holland. W. R.. Jr.
ear coordinates, submitted to J. Corn- 1986. Observed and modeled mesoscale
put. Ph's. variability near the Gulf Stream and

Harrison. D. E., Stalos. S., 1982. On the Kuroshio extension. J. Geophys. Res.
wind-driven ocean circulation. J. Mar. 91:9624-38
Res. 40:773-91 Semtner, A. J., Jr., Chervin, R., 1988. A

Panteleev. M. C. 1985. The influence simulation of the global ocean circula-
of friction on the character of the tion with resolved eddies. J. Geophys.
barotropic wind-driven wind circula- Res. 93:15502-22
tion. (in Russian) Izvestia POLY- Veronis, G. 1966. Wind-driven ocean rir-
\!ODE 15:34-9 culation - Part 2. Numerical solutori

Pares-Sierra, A., Vallis, G. K., 1988. Nu- of the non-linear problem. Deep Sea
merical experiments on a fast semi- Res. 13:30-5



204

Diapycnal Mixing and the Circulation of the Mid-Depth Ocean

James R. Ledwell
Lamont-Doherty Geological Observatory of Columbia University

Stommel (1958) and Munk (1966) have provided two sketches of the circula-
tion of the deep interior ocean which have come to permeate current thinking.
In Stommel's picture for the interior of all the oceans a uniform upwelling
velocity in the deep water, w, which is increasing upward on average, drives a
net poleward mass flux everywhere in the interior through the linearized,
steady equation for the planetary vorticity balance:

v = (f/1) w, (1)

where v is the meridional velocity, f is the Coriolis paramete-, 0 is it's
meridional derivative, and a subscript denotes differentiation. Although for
isopycnal surfaces diverging toward the poles this relation can refer at least
partially to purely isopycnal flow, the vertical velocity here is often viewed
as largely across isopycnals (diapycnal) and must in that case be driven by
diapycnal mixing.

In Munk's picture for the interior of the mid-depth Pacific Ocean (between
1000 m and 4000 m depth), both w and the diapycnal diffusivity, K (roughly the
same for heat and salt), are hypothesized to be constant with depth, and a
simple one-dimensional balance obtains for potential temperature, 0 (this
should be defined with respect to local reference levels rather than the
surface), and salinity, S, throughout the interior of the basin:

w z = K OZZ (2)

and:

w S, = SZZ (3)

This is the simplest interpretation one can make of the apparently exponential
potential temperature and salinity profiles observed in the mid-depth
Pacific.

Because Munk's picture has a constant w, it implies that the poleward flow
in (1) would be'confined to an abyssal layer below 4000 m depth, if it exists
anywhere. In the abyss, though, bottom topography and bottom friction might
perturb the simple balance represented by (1) . Thus the two pictures may be
fundamentally inconsistent. There is strong circumstantial evidence for the
Stommel picture in the existence of deep western boundary currents (although
not so much for the North Pacific; see, e.g., Warren, 1981), but on the other
hand, the exponential 0 and S profiles in the mid-depth Pacific seem to be
still on rather firm observational ground. Furthermore, we shall sugg-st
below that diapycnal mixing in the mid-depth North Pacific drives neither
poleward flow suggested by the Stommel picture, nor the absence of meridional
flow suggested by the Munk picture, but equatorward flow.
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An exercise that seems worth while is to rediagnose the 0, S and density
fields in the Pacific using modern data for information on w and K. Recent
studies suggest that in doing so we should allow for the possibility that K as
well as w may vary with z. Gargett (1984) reviewed the situation, and

suggested that, in parts of the ocean where the energy for diapycnal mixing is
to be drawn from the internal wave field, such as the mid-depth North Pacific,
K varies inversely with the buoyancy frequency, N:

K = al N-1  (4)

where a, - 10-3 cm2/s2 . She based this suggestion on a large body of data
from lakes and fjords, and the scanty evidence from oceanic measurements.

My coworkers and I (Ledwell et al., 1986; Ledwell and Watson, 1989) have
measured K in a basin off Southern California by releasing tracer on an
isopycnal surface and measuring its subsequent dispersion, finding a value of
around 0.25 cm2/s at N = 1.1 cph. A second experiment presently underway
appears to be yielding a value of K about 5 times larger at a value of N about
5 times smaller, consistent with the power law dependence in (4). Both basin
results are a factor of 2 or so lower in magnitude than implied by (4),
however, as are the fjord results reviewed by Gargett (1984). The basins,
although around 50 km across, are clearly not large enough to be considered
the open ocean, so the evidence from them are perhaps best considered as
extending the fjord and lake data to buoyancy frequencies characteristic of

the deep ocean. The next experimental step is to use our technique in the
open ocean, and we have indeed proposed an experiment for the pycnocline of
the eastern subtropical North Atlantic as part of the World Ocean Circulation
Experiment.

Inferences of diapycnal mixing from microstructure measurements are in some

cases consistent with (4) (e.g., Gargett, 1984; Moum and Osborn, 1986), but a
recent synopsis of data by Gregg (1989) argues for the very low value K =

0.025 cm2/s, in the presence of a background internal wave field, independent
of N. It is not clear yet what the microstructure measurements are telling
us, or whether they can give us accurate estimates of diapycnal diffusivities
for large enough space and time scales to be useful for modelling the general
circulation of the ocean. We hope to make progress on this front by including
microstructure studies in future tracer release experiments so the two

techniques can be compared directly.

Some of the observations, then, suggest that K varies with N, while others

suggest a small constant K. Of course, K is most often taken to be constant,
or negligible, in theoretical and numerical studies. I might mention that
Sarmiento et al. (1976) argued from radiotracer data in the abyss that K

varies with 1/N2. It seems worth while to explore the consequences of a
general power law dependence of K on N, which would encompaass all of these
scenarios:

K - ap N-P (5)

If K is the same for heat and salt, and if we ignore the depth dependencies of
the thermal expansion coefficient and of the derivative of density with
respect to salinity, then (2) and (3) may be combined into:



II
S 206

w N 2 - (K N2 ) (6)

We are assuming flat isopycnal surfaces here. We are also neglecting any
contribution to w from lateral mixing operating on isopycnal T/S gradients
through the nonlinear equation of state (see McDougall, 1987). From (1), (5),

and (6), we find:

v = -(2 - p) K (f/0) [(1 + p) (Nz/N)2 - (Nzz/N)] (7)

Note that this implies in general a vertical shear in v, and therefore,
through geostrophy, a violation of the assumption of flat isopycnal surfaces.
Nevertheless, (7) may be viewed as a diagnostic equation for that part of the
local meridional flow driven by diapycnal mixing, given the observed vertical
N profile. If p = 2, then v vanishes. In fact, from (5) and (6), w vanishes
because the z dependence of N and K cancel. The interesting point is that if
0 < p < 2, which is suggested by the admittedly weak evidence, then v is
toward the equator rather than the poles as long as (Nz/N)2 > (Nzz/N) . So we
have yet another scenario for v in addition to those of Stommel (poleward v)
and Munk (no v). Gargett (1984) pointed this out for a particular N-profile
and value of p.

In particular, if N varies exponentially at mid-depth in the Pacific, as
suggested by Munk's (1966) picture:

N = No ez/h (8)

then (7) becomes:

v - -p (2 - p) K f/(P3h 2 ) (9)

i.e., equatorward flow for 0 < p < 2. Munk's picture has p - 0, so v - 0, as
noted earlier. The variation of N with depth is probably close enough to
exponential in the mid-depth Pacific (see Fig. 1), for (9) to be qualitatively
correct. Furthermore, Fiadeiro (1982), in modelling the radiocarbon and
salinity data in the North Pacific, found evidence for equatorward flow at mid
depth. C. Rooth (personal communication) has found a similar result.

Care must be taken, however, to insure that the data support sufficiently
accurate higher order derivatives of N to draw such inferences. Figure la
shows ln N versus z for the mid-depth Pacific based on a modest sampling and
smoothing of data from the eastern part of a recent section at 24*N across the
Pacific. It looks convincingly linear, with a scale height of 1900 m, and I
thus implies eqbatorward flow everywhere for 0 < p < 2. The value of v at K I
1 cm2/s and p - 1 is -0.008 cm/s. However, if N itself is plotted versus z,
an excellent fit can be made with a second order polynomial (Fig. ib). The
polynomial fit, and p - 1, gives w, < 0 from (7) only for depths less than
3500 m; at greater depths wz > 0 is implied. The corresponding crossing
point for p = 0 is about 2700 m. In spite of this sensitivity to uncertain-
ties in Nzz, the data may be good enough, especially above 3000 m, to infer
the value of wz for various scenarios for the N-dependece of K. However, I
should confess that my attempts to infer the meridional shear, vz, and thus
the zonal slopes of isopycnals have been defeated at depths less than 3000 m
or so by the very small slopes implied, and at greater depths by uncertainty
in Nzz and Nzzz.
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Fig 1. Mid-depth profile of buoyancy frequency, N, from the TPS24 Section at
24°N in the Pacific. Temperature and salinity were averaged at 100 m depth
intervals over 8 station pairs spaced every 5° longitude from 135°W to 170°W.
N2 was then calculated over the 100 m intervals by differencing of the appro-
priate densities. Panel (a) shows in N versus z, with a linear fit, while
panel (b) shows N versus z, with a second order polynomial fit.
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THE "COLLAPSE" OF THREE DIMENSIONAL INSTABILITIES IN
ELLLIPTICAL FLOW

W.V.R. Malkus and F.A. Waleffe
Dept. of Math., Mass. Inst. of Technology

Experiments on the instability of fluid in a rotating
tidally distorted elastic cylinder reveal that the origin of
the observed broadband disordered flow is the "collapse" of
the principal three dimensional mode at a critical point in
its growth. It is proposed here that the process
responsible for this violent passage from completely ordered
to disordered flow is a ubiquitous source of shear flow
turbulence which by-passes lesser chaotic phases. Here we
explore the possibility that the transition is from the
hyperbolic behavior of the growing Poincare wave mode, to an
elliptic behavior suddenly induced by a critical condition
in the changing vortical flow. We show that uch a
condition for the principal modes is that 36: 14 01'y- -2 < 0
where-al.A (r) is the mean angular velocity about the
overall axis of rotation. From the amplitude equations
describing the growth of a mode and concommittent evolution
of the mean field, we estimate the times and radii at which
the critical condition is first reached. Current
observations of collapse are in qualitative agreement with
the proposed transition from hyperbolic to elliptic
behavior. However, quantitative discrepancies suggest that
the criterion for collapse would be more successful if
applied to the local finite-amplitude vortex, and not just
the component parallel to the axis of rotation. Further
laboratory study is planned, as is a more complete numerical
experiment; to define the parameter range in which collapse
of the first mode occurs. Outside this range one observes
sequences of chaotic modal interaction leading gradually to
broadband disorder.
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THE EQUATORIAL UNDERCURRENT
By

Joseph Pedlosky
Woods Hole Oceanographic Institution

Abstract

A review of a recent theory for the Equatorial Undercurrent
(EUC) was given. The theory builds on the diagnostic picture of
the circulation of the equatorial Pacific described by Bryden and
Brady (1985). In that picture the observed upwelling along the
equatorial takes place on isopycnals which rise upwards to the
east, along which the eastward flowing EUCis observed. Except
for the upper strata of the EUC, cross-isopycnal flow is weak.

Thus an adiabatic model of the EUC is considered in which
density, potential vorticity q, and Bernoulli function, B, are
conserved. A simple two-layer model is used in which the EUC is
represented in the lower layer over a resting abyss. Since the
EUC is thin in the meridional direction, the zonal velocity but
not the meridional velocity is geostrophic.

The key dynamical question is the determination of the
potential vorticity on the streamlines. Or, since streamlines
coincide with isolines of the Bernoulli function, the issue is
the determination of the potential vorticity as a function of B,
i.e., Q(B). It is shown that Q(B) can be determined by requiring
that the equatorial solution match smoothly to the thermocline
solution of Luyten et al., (1983). Thus the undercurrent can be
considered as the natural continuation of the ventilated
thermocline to the equator. This matching determines both the
meridional and zonal structure of the undercurrent as well as
definite scales for its width, depth, and velocity.

A completely adiabatic theory leads to a (spatially)
continously- accelerating EUC. It was shown that the inclusion of
entrainment can produce a termination of the EUC. Whereas in the
ocean the entrainment is localized in the uppermost strata of the
EUC which sequentially surface as the current flows eastward, the
limited vertical resoution of the model required a similar
spatial localization in a narrow domain around the equator. This
was shown to relate the decrease of B along the equator (B is
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constant at the equator in the adiabatic theory) to the
entrainment. A theory was presented which related the
entrainment to the stress-driven dynamics of the upper layer
which was at the same time coupled to the lower layer. This
coupled model produces a largely adiabatic EUC which terminates
at the ocean's eastern boundary on which the Bernoulli function
is brought to zero.
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Ocean Dynamics from a Climate Perspective.

Claes G. H. Rooth, RSMAS, Univ of Miami.

That ocean and atmosphere dynamics in interaction can lead to
"new" phenomena is well established in the context of the "El
Nino", but the significance of the oceanic heat transport proces-
ses in decadal and longer time scale climate dynamics still
elicits divergent opinions based on diagnostic and model studies.
It has been questioned, based un atmospheric model results
(Covey, 1988), but supported by dramatic examples of multiple
equilibria in coupled ocean-atmosphere systems (Manabe and
Stouffer, 1988).

Catastrophic state switching effects are characteristic of sys-
tems with mixed buoyancy forcing by an essentially flux control-
led property (salinity) and one subject to relaxation control at
the boundaries (temperature) (Rooth, 1982). F. Bryan (1987) pro-
duced the first evidence in a comprehensive numerical model of
what he termed the halocline catastrophy. Halocline switching has
been invoked to explain the Alleroed/Younger Dryas climatic tran-
sient (Broecker & al,1985) and used as an example of the uncer-
tainties associated with prediction of anthropogenic climate
trends (Broecker, 1987). I suggest that the underlying physics is
credible, whatever the specific shortcomings may be of the models
used in these studies, and that only mode changes in ocean dyna-
mics are likely to cause major impacts on the the atmosphere.

The first order climate control, and implicitly the tropospheric
density scale height,are imposed by the average vertical flux
balances due to visible and infrared radiation (including albedo
effects), and convective adjustment in the atmosphere (Manabe and
Weatherald, 1975). With the vertical stability fixed, the atmo-
sphere tends to develop a meridional temperature gradient in
proportion to the square root of the meridional heat flux demand.
Thus, a fractional change in the 20-25% oceanic heat flux contri-
bution to this demand should cause a relative change in the
atmospheric temperature range by about one eighth of the relative
oceanic heat flux change. It is thus likely that direct effects
of changes in wind forcing are linearizeable perturbations, and
that major ocean induced climate changes depend on thermohaline
regime transitions.

In contrast to surface temperature anomalies, those in salinity
can grow until limited by transport processes. Since surface
haloclines suppress convection, catastrophic halocline develop-
ment leading to bimodal system attractors are possible when deep
water formation regions are also regions of net fresh water
input. This happens in the Manabe & Stouffer model which has two
distinct equilibria, one with a climate like our present one, and
one where the meridional heat transport in the North Atlantic is
cut down by about 80%, resulting in a cooling of the entire high
latitude northern hemisphere, with a maximum amplitude in the
subpolar Atlantic of 5-6 C. However, a coupled system experiment
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by Washington and Meehl (1989) exhibits only quasi-linear adjust-
ments in the functioning of the oceans, which implies that a
perturbation analysis might suffice for them. Bryan & al (1984)
found that the heat storage lag effects in a fifteen layer ocean
model are like those of a parallel set of capacitances with
serial impedances which are much larger for the high heat capaci-
ty deep layers. Thus, the heat flux amplitudes associated with
the long lasting deep water lag effects is fairly small, and of
negligible climatic impact compared to those of the surface and
thermocline layers. This may not apply in the case of thermoha-
line regime shifts, which could involve extended periods of
anomalous circulation during the salinity field adjustments in
the deep waters. Such effects may also have a significant impact
on nutrient exchanges between the deep waters and the surface,
and thus on the biological control of the atmospheric CO 2 concen-
tration (e.g. Sarmiento and Toggweiler, 1985).

The global thermohaline mode can explain the observed interbasin
salinity contrasts without invocation of atmospheric water vapor
transfer across basin boundaries, and its equilibrium amplitude
is sensitive primarily to the net heat and fresh water balances
in the deep water formation regions. Substantial low salinity
transients, have been observed in the sub-polar Atlantic at
least twice in this century (Dickson & al, 1988). Although the
injection depth and intensity for the Labrador Sea (sub-polar)
water mode has thus been modified on decadal time scales, the
present thermohaline circulation state has not been switched off.
As in the model cases, the global thermohaline mode is apparently
quite robust.

In contrast to the thermohaline mode characteristics, the gyre
scale heat transport effects due to the wind driven lateral
circulation can be reasonably estimated based on the trade wind
related surface stress. The latter controls the equatorial upwel-
ling intensity, and the upwelling water is thermally conditioned
during the winter time convective ventilation events in the
eastern gyre sections. This suggests that the meridional heat
flux by the gyre circulation should be proportional to the wind
stress amplitude times the subtropical temperature range (or in a
low order climate model proportional to the cube of the latter).

Further theory development regarding the interplay between wind
driven circulation and dense water production in high latitudes
(or in other terms the capacity of the system to remove some of
the high latitude fresh water input from the sub-polar oceans by
wind induced surface currents) appears crucial to prediction of
the thermohaline mode intensity. Another key question is the
relative significance of heat (buoyancy) transfer between gyres
by cross boundary eddy transfers versus mean transport overtur-
ning, and how these processes respond to the diabatic forcing
effects within the gyre domains.

A better understanding of how deep basin recirculation domains
and boundary current patterns modify the transmission of tran-
sient water mass characteristics to different portions of the
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current climate stability as well as for the interpretation of
paleoclimatic information preserved in deep-sea sediments. At
present we do not know very well how to interpret gradients in
abyssal ocean conditions in terms of steady or transient climatic
forcing of the oceans. This severely limits our capacity to
expand the empirical basis for climate dynamics scenaria based on
oceanic data.
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Bounds on Spatial and Temporal Variability of the Gulf Stream.

T. Rossby

Since early summer 1988 we have been launching isopycnal RAFOS
floats on the 15 C isotherm in the center of the Gulf Stream off
Cape Hatteras. By releasing the floats in the upper main
thermocline we take advantage of the strong cross-stream
potential vorticity gradient to keep the floats from scattering
from the current. Through repeated seeding we can use the float
tracks to determine the path of the current and its change with
time. Also, pathways of ejection from the current can be used to
detect departures from simple dynamics, i.e. geostrophy and
gradient wind balances. These subsurface records can be used
together with IR views of sea surface temperature to examine the
vertical structure of the current.

The strong PV gradient has a striking effect on the downstream
spread of floats. Compared to earlier studies with isopycnal
floats only 100 to 200 meters deeper (12 C and 9 C), these floats
stay in the current at least 2 to 3 times farther over the same
period of time whereas the maximum velocity increases from 80
cm/s to 120 cm/s between the 9 and 15 C surfaces. Thus, speed
alone cannot explain the greater retention.

Lateral motions within the current are beginning to be the focus
of attention. A striking characteristic of the float tracks is
the up- and downwelling that occurs along the meandering current.
But superimposed on this 'deterministic' behavior (the vertical
motions correlate very strongly with path curvature, Bower, 19,;9)
we have several times observed a striking tendency for floats to
'slide' out of the current. We are now experimenting with
techniques to isolate this signal more clearly from the float
records. From all of the float data todate (> 80 float tracks)
there is no evidence for a preferred direction of lateral motion,
i.e. there has been a comparable loss of floats to the Sargasso
Sea and the Slope Waters (but this question has yet to addressed
thoroughly).

An issue that is beginning to catch our attention is the
breakdown of the.Gulf Stream as a filamentary feature. The
evidence at present is sketchy, but the float tracks seem to have
a wider range of expression east of the New England Seamounts
than to the west. The picture that emerges, however speculative
at this point, is a downstream transition to a field of energetic
eddies which can attach to each other to make an 'instantaneous'
yet well-defined path of the current. There is much research to
be done here.
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The availability of Geosat altimeter data has led to an explosive
growth in studies of sea level variability. Since the cross-
stream structure of the Gulf Stream seems to be so stable, as
indicated by the stability of the peak axial velocity in the
current, we thought it would be instructive to use the float data
together with a model of cross-stream sea level, constructed from
the 1980-1983 Pegasus study (Halkin and Rossby, 1985), to infer
what the sea level might look like. Using about 50 float tracks
in the current, we find the region of eddy activity, as defined
by a 0.3 m rms sea level standard deviation,to be very narrow (<
100 km) west of 69 W each of which it rapidly broadens to > 300
km by 66 W. The mean sea level difference was estimated from the.
Pegasus program to be about 1.1 m.
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DYNAMICS OF INTERACTING SOLITARY STRUCTURES

E. A. Spiegel

Department of Astronomy

Columbia University

In this talk, I return to a topic that was already discussed in the three lectures that

Christian Elphick and I gave last year and are outlined in those proceedings (GFD, 88:

edited by G. Flierl). At issue is the solution of partial differential equations in the style of

field theories such as those of particle physics. The idea is that when the original equations

admit localized solutions in the form of traveling waves, more general and complicated

solutions can be constructed from superpositions of such individual solutions. The result

is the replacement of the orginal PDE by ODEs in some sort of sort of N-body systems. This

kind of reduction is known for integrable systems but, when the structures are far apart.

this effective particle description may be used on nonintegrable systems with dissipation

and instability. (For a bit of history and refernces to earlty work see the 1988 Proceedings.)

Elphick, Meron and I have worked out the asymptotics for PDEs with translational

invariance (SIAM J. Appl. Math., in press), leading to equations of motion for the localized

structures. The paraoigm for that case is the reaction-diffusion system without advection.

However, the problem is trickier when there is also Galilean invariance, but Elphick. Ierley,

Regev and I know how to do such cases now. We get equations of motion for the structures,

but now the effective particles have inertia, which they did not in the previous instances.

At present, we are checking the agreement with numerical simulation on the original ODE.
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Elphick, Qian and I have also been trying to study the interaction of two-d vortices in

this way. I am not able to report glowing success, but the problem does seem to be yielding.

In all these problems, the fun is that we can give generic descriptions, independently of

details, for a given set of invariances of the original problem. This kind of approach is I
therefore useful for a first look at complicated situations. I

I
1

I

I
I



219

ENTRAINMENT INTO A LARGE REYNOLDS NUMBER JET

Melvin E. Stern
Florida State University
Tallahassee, Florida

An eddy with maximum circulationD (and typical

vorticity C ) located near the outer edge of a jet having

typical vorticity H (less than c) will be drawn further

inside the jet and eventually surrounded by that fluid.

Ambient irrotational fluid is also entrained, and an average

entrainment velocity(0.l ,0a) (DC)l is computed using an

inviscid, two dimensional, and piecewise uniform vorticity

model. An order of magnitude comparison with observed

entrainment rates in a turbulent flow suggests that the

model qualitatively describes a phase in the short lifetime

of a mature eddy stochastically aligned with the mean flow

direction.
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THE DIMENSIONS OF COSMIC FRACTALS

R.Thieberger*, E.A. Spiegel and L.A. Smith*
Department of Astronomy

Columbia University
New York, NY 10027, USA

Abstract

This study is part of an effort to understand the large
scale distribution of matter in the universe.

Self similar structures have a long history in Astronomyl
"

The classical approach uses the two body correlation
function2 . For calculating the fractal dimensions we should
expect to obtain more precise results using the conditional
density function 3 .

We considered model fractals4 , in addition to a set of
galaxy positions measured at the Observatory of Nice 5 , to
illustrate the method. We find that the data suggest a
rather larger fractal dimension for the distribution of
galaxies than is generally accepted.
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A possible simplicity in global M2
tidal currents.

Henry Stommel
W.H.O.I.

By comparing M2 tidal ellipses observed at several hundred
locations around the world at deep moored current meters (deeper
than 1000 meters) Luyten and Stommel (1989) suggested that the
Schwiderski (1979) black-box gridded numerical model probably
aives a reliable representation of the actual distribution of
tidal elipses globally.

Although the response of sealevel to the M2 force is rather
irregular [the phase lines interpolated from data (Villain, 1951)
are shown in Figure 1] and bear no obvious cause-effect relation
to the phase lines of the disturbing force (whose phase lines are
simply meridians, with two cycles around the world], the M2
current ellipses unexpectedly seem simpler. Figure 2 shows
(three=quarters of] tidal ellipses from the Schwiderski black
box. The radius is drawn at 0 hours Greenwich lunar time, and
the hodograph is continued for three quarters of a tidal cycle.
This enables the viewer to see the direction of rotation.

In Figure 3 we have drawn, on the same velocity scale, the
tidal ellipses calculated fiom Laplace's theory of the
semidiurnal tide in an ocean of uniform depth (4000 meters]
covering the entire globe. Comparison of this Figure with Figure
2 suggests that the Laplace unbounded ocean models the
Schwiderski black-box [and by implication the real natural] M2
tidal ellipses rather well, both in phase and latitudinal
distribution of amplitude. If the Laplace model is refined by
putting zonal boundaries at 60N, the high latitude zones of
counterclockwise rotation can be reproduced.

We are therefore led to enquire why a simple model like
Laplace.'s - which knows nothing about the coastal boundaries or
the irregularity of bottom topography - can give results that
even approximately resemble the real ocean tidal ellipses.

What kind of physics is involved? Are the reflected waves
from irregular boundaries confined somehow to coastal regions [as
Kelvin waves] or do they interfere sufficiently to cancel in the
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interior, leaving only the Laplace solution? Or is dissipation
of reflected wave energy responsible?

Luyten and I have not been able to explain this strange
apparent [we must use the word "apparent" because the
correspondence of the two charts 2 & 3 is not perfect 3
simplicity of relation between driving force and system response
in what has hitherto been considered a very complicated physical
phenomenon indeed.
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Figure 1 Lines of constant phase of the M2 sea-level, a

subjective analysis of observed sea-level 
data.
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EVOLUTION OF LONG-LIVED VORTICES

George G. Sutyrin
P.P. Shirshov' Institute
of Oceanology Acad. Sci

Moscow, U.S.S.R.

Part 1.

Isolated intense vortices, such as rings and lens in the-.
ocean, hurricanes and polar vortex in the atmosphere, Jovean
and Saturian Spots and Ovals, seem to be the most long-lived
ordered geophysical fluid structures. Their lifetimes are
much larger not only compared to a recirculation or
advective time but compared to a synoptic variabillity time.
Owing to their high energy and transport properties long-
lived vortices play an important role in the general
circulation of the ocean.

Geophysical eddies are known to be predominantly in a
geostrophic balance (McWilliams, 1988). For understanding
of main features of vortex dynamics a reduced-gravity
quasigeostrophic approximation can be used. In this case on
the beta-plane all stationary translating localized
structures must have zero net angular momentum (Flierl,
1987). Let us consider a nonstationary behaviour of a
monopolar vortex on the different time scales.

Part 2

For an intense vortex a recirculation time scale is much
smaller than a synoptic time. Analysis of an evolution of
small perturbations of a circular vortex shows that in the
case of monotonic-continuous radial profile of the potential
vorticity azimuthal disturbances decay in time due to shear-
dispersion effects (Sutyrin, 1989) For a step-like
distribution of the potential vorticity there exist
nondecaying azimuthal waves rotating slower than the fluid
particles (Polvani, 1988). These conclusions are in
qualitative agreement with numerical investigation of an
axisymmetriza'tion of an elliptic vortex (Melander et al.,
1987).

Part 3

At the synoptic time scale the beta-effect becomes
essential. It leads to an azimuthal deviation and motion of
the vortex center. Analysis of development of this
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azimuthal deviation shows that it has a dipolar structure
that coase the nonstationary translation in addition to
westward Rossby wave drift (Sutyrin, 1988). Vortex moves
predominantly westward of its radius is larger than the
deformation radius that is characteristic for oceanic rings.
Predominantly meridional displacement due to the beta-effect
is characteristic for a vortex of a hurricane type with the
scale which is much smaller than the deformation radius.
Nonfrictional decay of an intense vortex is small at the
synoptic time scale owing to quick fluid rotation in the
core. These results agree well with numerical simulations
(McWilliams and Flierl, 1979).

Part 4

At the larger time the radiation of Rossby waves reduces
the intensity of a vortex. Numerical study shows that
central core of a vortex with closed isolines of the
potential vorticity remains near circular during many
synoptic periods (Sutyrin and Yushina, 1989). Thus the
evolution of axisymmetric part of a vortex can be easy
calculated by its meridional displacement. When a vortex
approaches to a latitude of rest is impossible because of
the enstrophy could not increase in agreement with results
of Larichev (1983). Some kind of stationary translating
vortex was pointed out by Flierl (1984). Though this
sollution is not localized and has an infinite potential
energy it might be considered as one of the possible limits
of evolution of a strong nonopolar vortex on the
quasigeostrophic beta-plane.
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AN INVERSE ANALYSIS OF CSALT DATA

George Veronis
Kline Geology Labozatory

Yale University
New Haven, CT

Jae Hak Lee, a graduate student at Yale University, and
I have been analyzing the CSALT data gathered in Spring 1985
to determine diffusion coefficients and velocities in the
re~ion of observation. The data are particularly well
suited for such a study because vertical soundings were made
on a square grid array with 55 km between stations.

R. Schmitt (1987) has summarized many of the observed
features. A region with a strong staircase-structure in T
and S shows ten layers that are vertically homogeneous
locally and separated from each other by what appear to be
salt-finger interfaces. Temperature soundings taken at
horizontal intervals of 1.5 km show that some of the
homogeneous layers are coherent over a horizontal distance
of 33 km. A plot of all other data from identifiable layers
indicates that the data all fall into one of ten straight-
line segments on the T S diagram. Individual line segments
connect points as far apart as 400 km; T, S and all vary
within a line segment but these properties suffice to
identify an observed data point with a specific layer.

It is clear from the observations that the property
distributions are conducive to salt fingers. Therefore,
vertical eddy diffusion coefficients for salt and heat
should be positive if the fluxes are dominated by salt
fingers. Mass conservation and advective diffusive
equations for T, S and 0 have been used together with the
observed distributions of these properties to determine the
velocities and diffusion coefficients. The analysis was
restricted to the region with stronq staircases where the
primary transport mechanism (salt fingering) is understood
and can serve as a control on the procedures that were
adopted. Because of the restricted amount of available data
it is not possible to determine a general distribution of
the unknowns. Hence, as a first approximation, horizontal
diffusion has been omitted and both vertical diffusion
coefficients and vertical velocities have been assumed
horizontally uniform; the system is then overdetermined.

The preliminary calculations were meant to test the
foregoing simplifications and also to determine the
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stability of the solution procedure. Least squares yielded
results that were overly sensitive to small perturbations.
The method of total least squares provided an improvement in
the solution. Constraints on the expected errors may help
make the procedure more stable. So far the principal
physical result that we have derived is the ratio of
vertical heat to salt flux which achieves an average value
of about 0.9, in reasonable agreement with the ratio
obtained in laboratory salt finger experiments. The
associated vertical velocity field is downward, as one might
expect from the mean wind-stress curl for that area. The
vertical diffusion coefficient for salt is about three times-.
that for heat. The derived horizontal velocity field has a
great deal of eddy structure.
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BOUNDARY DRIVEN MIXING

Andrew W. Woods
Cambridge University

We consider two mechanisms of generating a boundary flow
in a stratified fluid and show how these can drive mixing of
the interior fluid.

The first mechanism arises when a stratified fluid is
contained in a vessel with insulated sloping side walls.
The isopycnals are thus non-horizontal near the walls of the
vessel. This generates a boundary current (Phillips, 1970,
Wunsch, 1970) which, in a closed vessel, forces a weak
return flow in the fluid interior. It was shown that this
return flow is exactly such as to mix the fluid according to
the advection-diffusion equation

Wi 4- l (1)

where L is the width of the container, f the fluid density
and k- the molecular diffusivity.

The second mechanism of mixing arises when there is a
turbulent boundary layer at the walls of the container. The
relatively large eddy diffusion coefficients decrease with
distance from the wall towards their molecular counterparts
in the interior of the fluid. Such variation in the
diffusion coefficients may generate horizontal density
gradients near sloping or vertical walls. These drive a
flow along the wall, which drives a return flow in the
interior of the container. A model of this process predicts
that the interior fluid mixes according to the advection-
diffusion equation

-h (2)

Where )L is the turbulent diffusivity in the boundary layer,
k.,the diffusivity in the interior and $ the boundary layer
thickness.

This equation was shown to be consistent with some
experimental results of Ivey & Corcos, 1982, Thorpe, 1982,
Phillips et al. 1986 and Ivey, 1987.

Such enhanced diffusion (2) may have a significant
effect in mixing in deep ocean basins (Munk, 1966).
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Simple solutions for the mixing of both a pynocline and a
point source at the bottom of a basin were described.
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An Estimate of the Dimension of the Attractor of a Quasi-Geostrophic System

Jun-Ichi Yano

M. I. T.

Recently, the various model studies (e. g. Curry, et al., 1984; Marcus, 1981; Yoden,

1985; Cehelesky and Tung, 1987) have pointed out that the model with enough number of

modes retained tends to behave in less "chaotic" manner than the model that number of

modes is severely limited, implying that the choatic behavior of severely truncated case is

"spurious". The present study is to comment on this point.

I and H. Mukougawa have taken as such an example the quasi-geostrophic two-layer

model with topograophic forcing, studied by Cehelesky and Tung. With an increase in the

number of modes included in the Fourier expansion, the change of the attractor-dimension

(Kaplan-Yorke dimension), which is considered as a good measure of the extent of the

chaotic behavior of the system, is investigated. No convergence of the dimension is found

by increasing the total number of Fourier modes up to 210. The Kolmogorov entropy, that

is another measure of chaos, also increases with an increase in number of modes.

The result shows that, even if the solution of the system is less "chaotic", in the sense

that the attractor projected on the phase plane spanned by the longest-wave components

apparently converges to a solution of the severest-truncation with the higher number of

modes included as in the present setting, this does not necessarily mean that the sys-

tem is really less "ehaotic" in the sense defined by the dimension of the attractor or the

Kolmogorov entropy.
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STATISTICS OF AGGLOMERATION

W. Young, Y. Pomeau and G. Carnevale
Scripps Institution of Oceanography

San Diego, California

As a simple model of agglomeration and inelastic

interaction of coherent structures we have studied

"ballistic agglomeration". This is an infinite ensemble of

particles moving on a straight line. Collisions are

perfectly inelastic (i.e. particles stick together) and

conserve mass and momentum. The result is ever more massive

particles moving ever more slowly and separated increasing

gaps.

A simple scaling argument shows that the average mass of

a particle increases as t2/ , the average gap length a tIZ 3

and the velocity decreases as t-1 . These analytic results

are confirmed by direct numerical simulation.

It is easy to extend the scaling argument to higher

dimension. One finds that the mass of a particle increases

as t where 1) is the dimension of the space.
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ON THE MERIDIONAL PROPAGATION OF ISOLATED EDDIES

Eric P. Chassignet

ABSTRACT

The meridional motion of isolated eddies is investigated in detail in several numer-
ical experiments. It is found that a distinction has to be made between the center of
mass and the eddy center, the latter being defined from either the interface displace-
ment or potential vorticity field. The center of mass is observed to move westward at"
approximately the same speed as the eddy center. On the other hand, its meridioi'al
motion is almost zero and does not coincide with the eddy center which moves signifi-
cantly. Different mechanisms for the motion are investigated and it is shown that the
presence of a dipole in the perturbation field can induce a meridional displacemeut.

1 INTRODUCTION

Little is still known at the present time on the propagation of eddies. Numerical

simulations on a /3-plane (McWilliams and Fllerl, 1989; Mied and Lindemann, 1979;

Davey and Killworth, 1984; Chassignet et al., 1989) have shown that an isolated eddy

will move westward at approximately the long Rossby wave speed (calculated from the

fluid at rest outside the eddy) and will leave behind a Rossby wave wake (Figure 1). A

distinction appears between cyclones and anticyclones which move slower and faster,

respectively, than the long Rossby wave speed (Nof, 1983; Chassignet et al., 1989). In

addition, anticyclones move meridionaly equatorward while cyclones move poleward.

Expressions for the westward propagation of the center of mass of the eddy were

derived by several authors (Flierl, 1977; Nof, 1981, 1983; Cushman-Roisin et ol.,

1989). In these studies, the location of the center of mass was assumed to be a fair

representation of the position of the eddy. As it will be shown, this is quite a good

approximation for the westward component of the drift, but is not for the meridional

one.

In this note, with the help of a few numerical simulations, the drift of an isolated

eddy is studied in detail. In particular, distinctions between the center of mass and

eddy center (defined as an extremum either in interface displacement or potential

vorticity) will be made. Emphasis will be on the meridional displacement, but the

zonal component will also be discussed, the two being linked.

The following investigation follows mostly the approach taken by the author during
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INTERFACE DISPLACEMENT ANOMALY
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Figure 1: Evolution of an anticyclone for a period of 200 days
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the summer. In section 2, the model and experiments are presented. Section 3 discuss

the drift of the center of mass versus the one of the eddy center. Section 4 investigate

the probable mechanisms for the meridional motion. In section 5, the induced motion

by a dipole on a vortex is discussed and related to the mechauisms described in

section 4. The results are then summarized in section 6.

2 THE MODEL AND EXPERIMENTS

The model used is the primitive equation, isopycnic coordinate model of Bleck and

Boudra (1986). This type of model allows the specification of desired initial conditions.

through the positioning of the isopycnal surfaces and, in particular, can reproduce

the initial conditions of lens-like eddies; i.e. ones where isopycnals surfaces.

The model is configured in a two-layer 2000 km x 2000 km square domain on a

P-plane with a grid spacing of either 20 or 10 km (anticyclone or lens, respectively).

Lateral boundary conditions are free-slip everywhere. A rigid lid is used for the

upper boundary and a flat bottom with no drag for the lower one. The model is

initialized with a Gaussian interface displacement h = hoe - 2 /2L3 where r is the radius

from the center, L, the radius of maximum velocity and ho, the center depth of the

eddy. The chosen values for L and ho are fixed to 60nkm and 500m, respectively.

This is not necessarily the most realistic parameterization of an oceanic eddy (Olson,

1980), but does permit comparisons with other studies (McWilliams and Plierl, 1979;

Mied and Lindeman, 1979; McWilliams et al., 1986). The velocities are initially in

geostrophic balance in the upper layer and at rest in the lower. The reduced gravity

g' is fixed and equal to 0.0196 ma 2 . The lower layer is chosen to be very deep (ratio

1:1000) to approximate a reduced gravity model. Motion in the lower layer modifies

significantly the motion of the upper layer eddy (Chassignet et al., 1989). In this

note, we concentrate on the mechanisms driving the eddy propagation in the upper

layer.

Four experiments are described in the following sections. Li is a lens (the upper

layer thickness outside the eddy is equal to zero and the isopycnals outcrop) and Al,
A2 and A3 are anticyclones with an upper layer thickness of H = 1000 m and lateral

eddy viscosity of 330, 50 and 0m 2j - 1, respectively (330m 2 a- 1 for Li).

3 DRIFT OF THE CENTER OF MASS VERSUS THE EDDY CENTER

The westward propagation of an eddy has been traditionally expressed as the evo-

lution in time of the location of its center of mass. The center of mass (X, Y) is
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defined by

X =< X71 >
y =< Y , >

wheref f ... d and T/is the interface displacement.where ~ r, < . =fn-dd

In the context of quasi-geostrophic dynamics, McWilliams and Flierl (1979) showed

that the center of mass motion is exactly the long Rossby wave speed in the westward

direction and exactly zero meridionally. However, in their numerical experiment, the

center of the vortex was observed to not always coincide with the center of mass. In"

particular, a meridional drift of a quarter of the long Rossby wave speed was observed.

In the reduced gravity case, assuming the eddy to have a small Rossby number

(reasonable for most observed oceanic eddies), Cushman-Roisin et al. (1989) showed

that, to the first order, the drift of the center of mass can be expressed as

0 f Jf(W77 +171 2 ) dx d(
f.2 f f 1 dx dy

kY=0. (2)

where X and y are the zonal and meridional drift, respectively. The other symbols are

conventional. The error on these estimates for a typical eddy is of the order of 10% of

the long Rossby wave speed. Cushman-Roisin et al. (1989) showed that (1) describcs

accurately the westward propagation of the eddy with the center of mass moving

slightly faster than the vortex itself. On the other hand, the error on the meridional

drift is approximately of the same magnitude as of the observed one. Therefore, the

derivation of X and Y *q performed to the second order in subsection 3.1. The results

are then compared to the numerical simulations in subsection 3.2.

3.1 Derivation of the center of mass propagation speed

The equation of motion for the inviscid reduced gravity model (infinite lower laycr)

are

ut + uu. + Vuv - fv = -9'h. (3)

Vt+ U + vvy + fu = -g'h (4)

ht + V.t (h) = 0. (5)

The propagation speed of the center of mass is defined by X and Y which are equal
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to

,=< Z17 >9=< X71 >=< Xht >= - < zV.- (m~h) >

=- < V.(zuh) > + < mh. Vz >

=< hu>

Y=< hv >

If we define f f. + fly, then equation (3) becomes when multiplied by h

hut + htu + (ish),u + (vh)Nu + huts* + hvu1,
- fhv - flhv = -g'(' )h.2

= 2

Taking the average over the whole basin and integrating by parts leads to

<hut > +4 < htu> -fo <hv > - < yhv >= O. I

We can performe the same for equation (4) and, defining k and Y as < hu >, and

< hv >t, respectively, we have

.- fo=/= 0 < yhv > (6)

+ f.X = -P < yhu > (7)

A scaling analysis (Cushman-Roisin et aL, 1989) shows that, to the first order, the I
terms in () can be neglected. By replacing u and v by their geostrophic values, (6)

and (7) provide X and Y as in equations (1) and (2). To obtain the second order !

expression, we replace k in equation (7) by its expression from equation (6) and

vice-versa for X. This leads to I
k+ f.Y -P < yhu >t -ff. < yIv > (8)

X + f.X = P < f/hv >t -fo3 < yhu > (9)

Using the fact that < 3yhu >t=< y(hu)t > and < 31hv >t=< y(hv)t >, we can

rewrite equations (8) and (9) as I
f+ f.= -P < hvu > -2lf. < ylhv > -0' < y'hv > (10) 1

.k + f.2t" = - < h >-2f0# < yhu > +g' < i + H > -0 2 < yhu > (11)

I
I
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Again, a similar scaling analysis as the one performed by Cushman-Roisin et al. I
(1989) shows that we can neglect the terms in C) and therefore

=-1 < hvu > -2 < Yhv > - < y2  v > . (12)

xm =lh2 2. 9 < yhu > +PL - h (13

center of mass then coincide with the eddy center and both move only westward.
At this point, we can replace s and v by their geostrophic values in (12) and obtain

an expression like equation (2) to the second order for k. We then have
Y er< hhhy > (14)1

The meridional motion of the center of mass is therefore not exactly zero. We now

compare the above results to the numerical calculations.I

3.2 Comparisons with the numerical experiments

In order to compare the eddy propagation to the one of the center of mass, one
need first to define the eddy center. Traditionally, it is defined as being the extremum
of either the interface displacement or the potential vorticity. The location of these I
three centers (center of mass, C,, and Cq, respectively) are presented in Figure 2 for
A2 and Li. For the anticyclone A2, the center of mass is always located in front of I
the eddy center defined from either the interface displacement or potential vorticity,
but has almost a non zero meridional displacement. On the other hand, the eddy I
center (defiaed from either C,, or Cq) has a significant displacement equatorward. In
this experiment, Cq follows closely C,,. On the contrary, for the lens Li, the center

of mass is located eastward and moves also only westward. Cq is observed to follow
closely the center 'of mass. On the other hand, C. moved slightly poleward.

The zonal and meridional velocities of the center of mass and eddy center for Al I
and Li are presented in Figure 3 as well as the estimate of the center of mass westward
drift calculated from Cushman-Roisin et al. (1989) (equation (1)). For both Al and I
Li, the estimate represents accurately the westward drift (center of mass or eddy
center since they move at approximately the same speed) (Figure 3). As expected I
from Figure 2, in the anticyclone A2, the center of mass has almost a zero meridional

I I I I ! I
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motion, while the meridional drift of the eddy center is significant. The meridional

drift of the center of mass therefore does not describe the meridional drift of the eddy.

In order to check more fully the accuracy of the center of mass drift calculated in

equations (6) and (7) (first order estimate) and in equations (12) and (13) (second

order estimate), these estimates are computed for Al and Li and then compared to the

actual translation of the center of mass. The differences are presented in Figure 4. for

Al and L1, respectively. Not to surprisingly, the error decreases when the second order

terms are taken in account. The calculated drifts approximate closely the observed

ones. The inviscid reduced gravity equations therefore gives a good representation of

the vortex behavior in a model with strong lateral eddy viscosity.

4 DRIFT OF THE EDDY CENTER

At this point, we therefore have to make a distinction between center of mass and

eddy center, at least for the meridional component of the drift. In subsection 4.1,

we first consider a particle located at the center (defined as an extrema in potential

vorticity) and study its behavior. In subsection 4.2, we then consider the contribu-

tion of the different integrals derived in section 3.1 when integrated over the eddy
itself. Finally, subsection 4.3 investigates the flow field which contributes to the eddy

propagation.

4.1 Lagrangian approach

If the center of the vortex is defined as the extrema in potential vorticity, then the

particle located at the center should remain at the center as it has to conserved its
potential vorticity. Based on this consideration, we can express the potential vorticity

q of the particle at the center as

qceet f + fcenter + eter(15)

where f is the votticity of the particle. Since the particle conserves its potential

vorticity, at a certain time At later, the change in ycet,, will be given by

icete -qcenter Ahcenter 1 Aenter (16)
Scete = , At 6 At(6

..nt. can be decomposed in two parts, namely j, and i2, which correspond to the
contribution due to the change in depth and to the change in vorticity at the center,

respectively.



245

C-i'

t" ot

.2 -Ii

0, II . . .. .............'

.d

s "

u 4 : r e

em Ii.5 Jw:
, * *' : * o -- ,, -,, -tj,: ooIO eady

I Figure 4: Differences between observed velocities and first (dashed) and second order

estimates (dotted) for meridional in (a) A2 and (b) Li and zonal in (c) A2 ad (d)
Li.



246

Lateral vscosity aiz JVe d(Yn2& -1) I (CM a (er s.CM 1) (C .a.D-

330 -2.4 -3.6 -5.0 -0.49

so -1.0 -5.6 -6.6 -0.3

0 -0.1 .2.5 -2.6 -0.24

Table 1: il, j2, j, job.red averaged over the last 100 days of Al, A2 and A3.

This simple definition of j,- t. illustrates nicely why the cyclones move poleward

and anticyclones equatorward. The fact that energy is radiated away in the Rossby

wave wake field implies a decrease in interface displacement and in the magnitude of

the vorticity within the eddy. In the northern hemisphere, for an anticyclone, &h

is negative and Af positive (since f is negative) which therefore implies from (16)

a southward motion. On the contrary, for a cyclone, Ah will be positive and Af

negative, therefore implying a northward motion.

The values of j, and j2 for a period of 100 days are presented in Table 1 for the

three anticyclones Al, A2 and A3 (eddy lateral viscosity of 330, 50 and 0m 2s - 1 ,

respectively) and compared to the observed velocities. One can notice the increase

in observed meridional speed as the viscosity increases. This is better illustrated

in Figure 5 where the meridional velocities for Al, A2 and A3 are represented as a

function of time.

It is of interest to relate the strength of the Rossby wave wake to the meridional
propagation rate. T' -xtrema in the interface displacement of the wake as a function

of time is presented in Figure 6. One can notice that the wake is stronger for Al (high
viscosity case) where j..t,,, observed is the fastest. The wake in A2 and A3 have a

similar strength which correspond to a similar meridional displacement. In both A2
and A3, after approximately 70 days, the intensity of the wake starts to decay along

with the eddy. This is not the case for Al where the strong lateral eddy dissipation
does not allow for a full development of the wake, therefore accelerating the decay of

the eddy and inducing a faster meridional propagation.

In neither Al, A2 or A3, the potential vorticity at the center of the eddy is con-

served and, as shown in Table 1, dissipation (explicit lateral eddy viscosity or implicit
numerical) produces considerable changes in j, and i2. In all cases, one needs only a
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very small change in the center depth (for example, only a few meters over 100 days

for the inviscid case) or in vorticity to obtain a good agreement with the observed

drift. On the contrary of section 3 where inviscid dynamics accurately described the

center of mass motion, in this case, the dissipation present in the model (explicit

or implicit) does not permit conservation of potential vorticity and overcomes any

additional insights that one could extract from such an approach.

4.2 Eulerian approach

The calculations presented in section 3 were integrated over an infinite area (the,

whole basin in the case of the numerical experiments) and one can ask about the

contributions of each integrals when integrated over the eddy only. In addition,

several of the terms that were equal to zero (like divergence) when integrated over

the whole domain are now going to contribute to the expression of ,. The expression

of j. from equation (6) to the first order is then
=- < Yh v > - "<hh > - 1 < V. (uhu > + < V. (_yh > (17)

where < ... > is now an average over a finite surface.

Figure 7 represent the contributions of each of the terms of equation (17) (TI, T2,

T3 and T4, respectively) at day 100 for experiment A2 when integrated over a circle

of radius R (x-axis in Figure 7) centered on the eddy center with R varying from 20

km to "oc". One can see that within the core of the eddy (R < 150 kin), most of

the terms are quite small, but the sum does not agree with the observed drift. As

R increases, the integrals start to take into account the Rossby wave wake and each

of the terms become important. When the integral is performed over a large portion

of the domain, then all the terms as well as the sum vanish. The only conclusion

that one can extract from this simple exercise is that one has to take into account
the perturbation field around the eddy. If we define the field as being the sum of an

axisymetric vortexc and a perturbation, then the contribution to j, of the axisymetric

field is zero (equation (17)). The perturbation field is the only one contributing.

4.3 Perturbation field

In this subsection, the perturbation field is obtained by substracting an axisymetric
vortex to the total field. In our numerical experiments, it is assumed that the eddy

remain somewhat like a Gaussian and therefore, the substracted axisymetric vortex
2

is defined as h' = h"exp-b3" where h: is the maximum interface displacemt at the
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center of the eddy and L', the radius of maximum velocities. Both fields (total eddy
and perturbation) are presented in Figure 8 for day 5 and 100 of experiment A2. One
can notice the presence of dipoles in the perturbation fields. At day 5, the dipole
is oriented in the east-west direction and is quite weak in amplitude. After a few
days (until day 50), the dipole gains in strength and starts to tilt toward a north-
south axis. At day 100, the dipole is quite strong and oriented southwest-northeast.
The strength of the dipole as time varies can be deduced from the strength of the
Rossby wave wake as shown in Figure 6. One can notice that at day 5, the dipole
is weak and such is the meridional speed of the eddy (Figure 5). The meridiona"
propagation increases as the dipole grows in strength. The emergence of a dipole in
the perturbation field is consistent whith Flierl (1984) who showed that a radially
symmetric structure propagating on a #-plane will generate a perturbation field of
the shape of a dipole. Application to a constant potential vorticity profile of the same
size as the present case at day 100 gives for the maximum interface displacement of
the dipole a value of 35 m (Flierl, personal communication) versus 25 m observed in
Figure 8d.

5 INDUCED MOTION ON A VORTEX BY A DIPOLE

The natural question that emerge from subsection 4.3 is: Is the dipole able to induce
a meridional motion? In this section, we first investigate this question numerically in
5.1 and then analytically in 5.2.

5.1 Numerical approach

The first three experiments that are presented in this subsection investigate the
behavior of a dipole when isolated. The fourth one discuss the effect of dipole when
superimposed on a symetric vortex. In all experiments, the dipole is defined from the
one at day 100 of A2 in Figure 8, namely a maximum interface displacement of 25 m
located at L. = 170 km from the center. Experiment D1 is a dipole oriented in the

north-south direction and the interface displacement field is given by h, = Cy exp11
with C = 2.4 10-1. After 100 days (Figure 9), the dipole is located westward of its
initial position and traveled at a speed c. - 3.6 cma - 1 . This is less than the long
Rossby wave speed (4cma -). No meridional displacement was observed as well as
almost no decay in the amplitude.

The dipole self-advection is investigated in experiment D2 where the same experi-

I
I
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ment as above is performed on an f-plane. In this experiment, the dipole moved very

slowly at a speed c - 0.3 cm s
Finally, the same experiment as D1, but tilted 45, experiment D3, was performed

in order to investigate the influence of the dipole self-advection of the meridional

motion (Figure 10). The interface displacement is given by h, = C(y - z) exp- 3'.

with C = 1.7 10- 4 . In this case, the dipole moves westward at a speed c, - 3.9cm - I

and southward at c,, - 0.2 cm a- 1. One can therefore conclude that the dipole self-

advection is enough to induce some meridional displacement when tilted and on a

#-plane.

IrfIM PE .D-4T ISO

I;f ill I i;ii 1 11 11, ii l i ! ill I I ,I1 ! ii ' ii I Ip l! liii Ill4 l4l il M . M

Ii PIII||1 I I hlih1 i Jill lIlhI P1 ill 1Il lIII II Phl l im i |1I ll ill lii Ilil Ill Ill t111 iII III IIII Ill i

Figure 10: Dipole D3 at day 100.

Experiment D4 is an attempt to understand the effect of such a dipole when super-

imposed on an axisymetric vortex. The evolution on an f-plane of a field h = h. + hl,

where h. is a Gaussian vortex as in A2 at day 100 and hl, the dipole described above,

is presented at day 5 and 100 in Figure 11. The trajectory of the center of h is
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presented in Figure 12. From Figure 11b and d, we can see that the dipole looses I
its strength rapidly and that the eddy has the tendency to axisymetrize. As shown

in Figure 12, this induces a westward motion as well as a northward displacement

(north is defined by the orientation of the dipole). On a 3-plane, the strength of

the dipole is be maintained through Rossby wave radiation and in this experiment, I
without #-effect, the predominant effect is axisymetrisation.

5.2 Analytical approach I
In this subsection, we now investigate the propagation of a structure defined by-

h = h. + h, where h0 is the Gaussian defined by h; exp- 2 and h, the dipole defined I
V
2

by hi = C(y - z) exp 3,10 (450 tilt). The total potential vorticity q is defined as

G + to + fo + fly/
q H + h. + h,

If we consider h, <:z h. < H, then the potential vorticity can be expressed as q. + q,

where

H H 2  
0

q + = 6 +fly _. 
+ foh.

H H2

If we assume the structure to propagate at a constant speed c, then the potential I
vorticity equation can be written as

g_..Vq. = u.. Vqi + u.• Vqo. (18) 1
We can perform an expansion around the center which leads to I

qo. = az, q., =

q, = a'z + b'y.

The geostrophic velocities at the center for u., are

h'g' 
h*g,U,=fL2 1 f.L 2

and the drift speeds can be expressed from (18) as I
c = u1(O) - A - (19)

a
atc = ,1(o) + A- (20)
b
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where A = ' We can now compute a', b', a and b and find that

4A 4Ah' (-2A + fo)h: (21)a =b = -- - +  H 2L2 (21
FLb 2 p~ 2 L 2 + HL

a' 4B (-2A + )(22)
= H+ H2

b' 4B _(-2A + f.) + 23
H H2  (23)

where B = 1'2 The geostrophic velocities at the center for the dipole aref.L2"

I ,,,C) = V1(o) = 9 IC

fo

This leads to expressions for the drift speeds

gC 4BL2 + (-2A+f) H IL (24)

fo 4 + 7
2L 2 - 6_-

_ g'C 4BLI + (-2A + fo)L (25)

y + -'1 L2 - 6(

wher -= = I = o( /L)(6
terms in h. and hl. This gives a simpler expression for c. and cy,

12 'C L2-1
+ + 4- - L2

f. L.(4 + y2 L2) (27)

Application to the present case with h. = 375 m, L = 70 kin, C = 1.7 10- and L.

170 km provides c. = 4.1 cm j - 1 and cy = 1.7cm 1 . These values are smaller for c.

that observed while cy on the contrary is too large. On the other hand, this calculation

was performed for h. < H which is not the case for the numerical experiment.

6 CONCLUSIONS

The meridional motion of isolated eddies was investigated in detail in several numer-

ical experiments. One has to differentiate between eddy center (defined from either

the interface displacement or potential vorticity field) and the center of mass. The

center of mass was found to propagate only westward while the eddy center moved
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significantly meridionaly (except in the lens case). When the propagating eddy is

decomposed into the sum of an axisymetric vortex and a perturbation field, the latter

has the shape of a dipole. It was shown that the presence of such a dipole in the

perturbation field can induce a meridional displacement. Future work will include an

exact derivation of the perturbation field in the same spirit as Flierl (1984) and the

study of its impact on the eddy motion. 1
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FINITE AMPLITUDES LONG WAVE BAROCLINIC INSTABILITY

Liang Gui Chen

ABSTRACT

A finite amplitude long wave equation of motion on a two-layer f-plane is dcrived
for piecewise potential vorticity structure using contour dynamics and an asymptotic
expansion on two small parameters. A proper scaling between these two parameters
e = 61 where elis proportional to the wave length scale and 6 is the depth ratio of
the two layers (b=H1/H2) reduce the vorticity front evolution equation to a set of

two linear equations. These equations predict that the instability of a sinusoidal

long wave disturbance can grow from infinitesimal amplitude to finite amplitude
without harmonic distortion, until the disturbance amplitude is comparable to its
wave length. This prediction is verified by a numerical calculation.

1 INTRODUCTION

The Gulf Stream meander is one of the major features of the oceanic circulation.

This strongly baroclinic current has variability over a very large scale. It retains

its integrity over a long distance compared to its width or the Rossby deformation

radius. The time scale of such meandering motion is also very long. Previous

researchers have used different approaches to study this problem. One of them

is the use of the linear instability in either barotropic or baroclinic or l'oth to

calculate the properties of waves upon the current, (Flierl, 1975; Talley, 1982).

Another is the dcrivation of equations for changes in the direction of current by

using the cross-stream integrated vorticity balance. Flierl et al.(1984) , in the

second approach, developed a 'thin jet' theory for the time evolution of Gulf Stream

meandering urlder the basic assumption that the down-stream scale is much longer

than the jet width. They also obtained a dispersion relation for long waves on

a baroclinic jet and proved that the small amplitude limit of the thin jet model

gives the same dispersion relationship as instability theory in the long wave limit.

The method of 'contour dynamics' method is another approach. Pratt and Stern
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(1986) used this method to develop a theory describing the nonlinear evolution of

the meander. Their model is a quasi-geostrophic 1! layer, with piecewise uniform

potential vorticity. They obtained a path equation for the large amplitude, small
curvature meandering motion. Pratt (1988) used this path equation to study the

nonlinear meandering and the "pinch off" process of the Gulf Stream.

The purpose of this work is to look at the baroclinic instability problem of a

finite amplitude disturbance on the two layer quasi-geostropic region. The simplest

possible model is used (e.g. no P9 effect ) in order to gain physical insight. One of

the main assumptions is that the two-layer depth ratio 6 = H,/H 2 is a small pa-

rameter. In this case, all the unstable wave length are much longer than the Rossby

defomation radius so that the wavenumber e is small also. We shall also restrict

ourselves to a periodic wave-form in the x-direction. The two small parameters E

and 6 will be linked together by proper scaling and asymptotic approximation. We

also choose a piecewise uniform potential vorticity on each layer and contour dy-

namics is used to set up the evolution equations for the vorticity front. One of the

reasons for choosing such a piecewise uniform structure is because at the center of

the Gulf Stream the local potential vorticity gradient is much stronger than that of

the planetary potential vorticity gradient. Also, this assumption greatly simplifies

the problem by reducing the number of the dimension so that the result will be easy

to understand and perhaps can be used to understand more difficulty problem. Ve

will further simplify these equations by letting 6 --- 0. A proper scaling to these

simplified equations shows that b - f 3 and the slow time evolution scale is propor-

tional to 61. It then turns out, somewhat surprisingly, is that the equations for

the time evolution of the finite amplitude vorticity fronts are linear. A numerical

calculation is then used to test our equations and the result agrees well with the

theoretical result.

This report is divided into four sections. In the first section, we give a brief review

of the linear instability theory for the problem. Although solving such a linear

problem is a simple and standard process, it does give us a very good guideline in

the scaling of the more complicated finite amplitude nonlinear problem. It also help

us in understanding the long wave instability mechanism on such two-layer system.

Section 2 is my main work on this problem. Section 3 is the numerical calculations.
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Section 4 is the conclusion and some discussion of future work.

1 LINEAR THEORY

Figure-1 shows a jet flow in the two layer f-plane quasi-geostrophic system. The

upper layer has depth H, and density p and the lower layer has depth H2 and

density p + 6p. The interface between the two layers has such a structure that the

potential vorticity produced by the interface are piecewise uniform in each layer. A

discontinuity occurs at the center of the jet, y=O, so there is a potential vorticity

jump there. In the upper layer the northern region uniform potential vorticity is

zero while the southern region is -2Aq. In the lower layer the northern part is zero

and the southern part is 2 6Aq. z

x

H2

Fig-1. Geometry sketch of the two-layer, quasi geostr-
phic model with piecewise uniform potential vorticity on
each layer. All the variables are dimensional.

The quasi-geostropic potential vorticity equation governing such flows is:

2 P_+ 2 { 0 y0_ y > 0

2 ¢ +-f (02 - 0) = _(1)

7' 2 + f--l-H (01 - 2) = 2Hf <0(2)

where T, and %P2 are the streamfunctions of the upper layer and the lower laycr re-

spectively. g" is the reduced gravity and f is the Coriolis parameter. The horizontal I
velocities are given by:

VI = -0,9Y V1 = 09V)/ax (3)

U2 = -oM/ay V2 = o¢0/aX (4)

1
I
I



!
263

We now nondimensionalize equations (1) to (4). The nondimensionalized pa-

rameters are chosen as: potential vorticity q*, horizontal length as the Rossby

deformation radius L*, velocity U*, time T*:

= /H +1H2

V 12

gH 1

UO _~g H2  A
. (H I+ H 2)

T* -H' HI H 2

The nondimensionalized parameter of the horizontal velocity is chosen in such a

way that the maximal velocity at the upper layer jet equals to one. The nondimen-

sionalized form of equation (1) and (2) become:

V' 1 + (02 - 01) = { 5
-22  y <>0-2 u<0(5)

2b y><0!j>+O¢-¢) 2 < (6)

For convenience, we use the same notations for the nondimensionalized forms so

equations (3) and (4) remain the same forms.

The basic state time independent solution of (5) and (6) are

7 -76  y>0
2 _ I ~I-.i~

71+6 > 0(

'k2 -6s -. ._v i- ,, >0 (8)

, 1+6 7/1+6 ,,<0

For the time-dependent problem, the total streamfunction can be described as

the sum of the basic state streamfunction plus the time dependent streamfunction

O i = i(y) + ¢ (x y t) i = 1, 2 (9)
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The equations governing 01 and 0 2 are

2' , + (,/p _ 0')= o 1 )
1 2 1(10)

V ( - 0) =(11)

Assume 01, 0 2 have such wave forms:

i" = Ik(y)ekcz-Ct i = 1, 2 (12)

then the solution of (10) and (11) give :

01) ={ (Y)(Ae-k - e--) Y > 0 (13)

"() (Aeky - e)') y < 0

1 I 6 (Ae-k + 6e-y) y > 0
2(Y) t (AekY + 6be) y < 0(14)

A2 = + 6 + k 2

where A2 = 1 + 6 + k2, A is a constant which will be determined later. We must

match the pressure across y = 0 which gives:

- c) i a = constant i = 1, 2. (15)

By (7) and (8), the associated undisturbed velocities are I
e -  >0 (16)

1  eY iVi y < 0

u2i ={ i-T Y > 0 (17)

Substituting (13),(14),(16) and (17) into (15) yields:

(b + c)(Ak + bA) = 6Vl + (A + 6) (18)

(1 - c)(Ak - \) = V1r + (A - 1) (19)

Equation (18) and (19) leads to the quadratic equation of phase speed c:

-Ak(1 +6)c 2 + k(1 - V2 )(A- YT )c + b(\- VY + )(k- /i +b)(1 -6) = 0 (20)



265

Now, a.sumc both b and wavenuinbcr k are small:

6 << 1 k << 1

this means that the lower layer is much deeper than the upper layer and the dis-

turbance waves are long waves compared to the radius of deformation." so (20)

becomes:

2c 2 - k 2 c + 6k = 0 (21)

A proper scaling is needed to assure that the three terms have the same order and

balance each other. This leads to the requirement that

k = 6113K, c = 6213c0  (22)

where both K and Co are of order 0(1) now. Equation (21) becomes

2C2 - CoK + K = 0 (23)

which leads to the solution of Co

| c0 = 0 /K(K 3 - 23)

4

or b213K 2  1
c = 62/3[4'- 4 ,1(1 3 - 23)] (24)

This is the dispersion relation for the linear problem. It shows that for a very

deep second layer the most unstable wave length is the the long wave of which the
wavenumber k is associated to the k - 6f. The growth rate, or the order of kc, is

associated to the 6 also, This scaling,connecting the time growth rate, wavenultber

and depth ratio,is the basic guideline in the scaling of the finite amplitude prollem

in section two. Kc

0.5

1 !€M 2 K

Fig-2. The instability growth rate Kc, versus wavenum-
ber K. The most unstable wavenumber is K.,.. Short wave
with wavenumbers K >_ 2 are stable
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Figure-2 is the unstable growth rate Kci versus wavenumber K,

This curve shows that the unstable occurs at K between 0 to 2 and the maximal

growth rate, or the most unstable wavenumber, happens at K = 43 - 1.587. As the

K gets smaller, the unstable growth rate becomes small. At the limit of K --. 0, the

growth rate approachs zero also. This means that a very long wave is almost stable.

So althought at the initial stage, the infinitesimal disturbance might consist of a

broad range of wavenumbers K , the dispersion relation (24) shows that after some
time, the disturbance will be dominated by the wavenumbers around K = 1.587,

or k = 1.58763 .

Knowing c enables us to look at the motion of the two vorticity fronts L1 and-L2 ,

(figure-3), which are given by:

a0b dL, OLi OL,
-. -v=- d= - + ii-i--  i =, 2. (25)

ax dt at ax

K1

Fig-3. Plan view of the two vortiaty fronts L, and L2 -.

The assumption that they have the wave forms Li = lieik(x- ct) leads to

L,- Oi , i 1,2 (26)

The undetermined constant A can also be solved by (19)

A = 62/3 CO0271-Cog (27)
1 - CoK

Equations (1), (16), (17), (26), (27) together give the ratio of the two vorticity

fronts as:

(1- 1CO) (28)

L2!
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The magnitude of the ratio is

I 1= (1- gc 7 )2 + (gc,)2  (29)

where

Cr = Re(Co) = K'14 c, = Im(Co)= V/g(23 -K 3 )

The phase different between L, and L 2 is

0 = arctan( - i ) (30)

When the wave is stable, say K > 2, ci = 0 so the phase shift is zero. For the

most unstable wavenumber K = 43, the amplitude ratio of the two fronts is one

while the phase shift is about 900. Actually, the amplitude ratio is independent of

K, it is always one in this asymptotic approximation.

2 FINITE AMPLITUDE ASYMPTOTIC THEORY

As shown in the linear theory a long wave with wavenumber k , 1l/3 is

unstable. It will grow from infinitesimal amplitude to finite amplitude conseqently

the linear theory become invalid. Our interest now is taking the linear theory as a

guide for the finite amplitude disturbance problem, we will pay particular attention

to the scaling of the depth ratio b to the wavenumber k and the time evolution

scale.

The model is very much the same as in tie linear model except that the amplitude

of the disturbance now is finite. Also, we assume that it is periodic in x-direction.

The reason we chose such a periodic distribution structure in x-direction comes from

the consideration of the barotropic component effect from the far field. With the

use of a periodic structure, we do not need to consider the far field effect which will

cause some kind of difficult and uncertain discussion on the far field structure. I

worked on this nonperiodic structure also but have not reached any conclusion yet.

The governing equations for the streamfunctions and the basic flow are (5) (6)

and (16) and (17). We rewrite here:

V' 0 +(0- 01) { >0 (31)V2 ¢(¢ 2 - a ) = -2 y<0
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V 2 2+ b(01 -  ) 2) 0 < >0(32)

e -  >0 (33)
.i ..r 76 l Y- < 0

192 "  Y > 0 (34)
fi2= _e"VITT- Y < 0

Again, assume that the total streamfunction is the sum of the basic state stream-

function and the time dependent streamfunction

k = 1(y) + 0(xy t) i = 1, 2 (35)

Now the time dependent streamfunction is no longer a small term. The governing
equations of these time dependent streamfunction, after dropping the prime for

convenience:

2, + (02 - 1,) =2 L, < y < 0 (36)
0 elsewhere

26 0<y<L,
V72 2+6(0b1 -0)=M2 -26 L1 <y <0 (37)

0 elsewhere

Here, All and M 2 on the right hand side can be refered to as the vorticity anomaly
to the basic state. Equations (36) and (37) can be rewritten into a Laplace equation

and a Helmholtz equation:

v72 (6 1 + 0k2) = "K.11 + 11: 2  (38)

V 2 ( 1 2 - 01) - (1 + b)(0 2 - t1) = M 2 - MI (39)

The solution of equation (38) corresponds to the barotropic component and (39)
corresponds to th baroclinic component. In contour dynamic method, solutions of
equation (38) and (39) can be constructed by using the Green's function kernels G,
and G 2. Gi is for the Laplace operator V72 and G2 is or the Helmholtz operator
V2 2 . G, and G2 are:
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G,(x, C, y, 7)= ln(cosh (a -)2- cos (- )27) (40)a a

G2(X, C, Y, 1) = ICOo(Y((X - C)2 + (Y - 17)2)1/2) (41)

y ---+6

where constant a is the wave length of the periodic disturbance, Y = 1 +6, C and 7,

represent the x and y coordinates of a point source of potential vorticity anonaly.

K0 is the zeroth order modfied Bessel function.

The solution of the streamfunction caused by a single point potential vorticity

source at (C, 77) are given by:

¢1 AGI(x, , y, q1) + BG 2(x, C, y, q) (42)

0k2 = AGI(x, C, y, q) - 6BG2(x, , y, q) (43)

InI which

A 6M + M2
4ir(1±6) (44)

Al2 - M
B 42 (1+6) (45)

The total contribution of all the potential vorticity anomaly points can be com-

puted by integrating (42) and (43) over those region of ( , ij) where there is a

potential vorticity anomaly in either upper layer or lower layer or both.

(1); (2)V' =1/,A,~, C, y, i7ddj+i B2X,, ,7) q (6
02 = if()AGI(x, C, y, q?)d~d??- 6f(2 BG2(X, C, y, ,1)dCdt7 (47)

Now we must look carefully at the integral of fjj() and ff(2). First, the direction

integral in G, and G 2 have different regions. The integral of G, is from ( = 0 to

C = a while G2 is from -oc to +oo.

I(1) = ad J(A)dq (48)
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fJ2 d J(13)d 7  (49)1

The integral in 17 direction depends on L, and L 2 , as do the coefficents of A(M 1 , A12)

and B(M,, Al2). Six different combinations of L1 and L 2 (see figure-4), along with

A(M 1 ,M'2) and B(M'l, M 2 ) are given as:

(1 2) (3) L2 xI
LI L1

L2

(4) (5) (6)

Fig-4. Six different combinations of L, and L2. The
integral region and the coefficents M, and M2 dependent
on them.

1) L 2 > L1 > 0, the integral region is divided into (0, L1 ) with Ali = -2, M 2 =

26, (L 1 ,L 2 ) with Af1 = 0,AI 2 = 26.

2) L1 > L 2 >. 0, the integral region is divided into (0, L 2) with All = -2, Al2 =

26,(L 2,LI) with Af1 = -2, M 2 = 0.

3) L2 < 0, L , > 0, the integral region is divided into (L 2, 0) with All - 0, M2 =

-26, (0, LI) with Al1 = -2, M 2 = 0.

4) L, < 0, L 2 > 0, the integral region is divided into (LI, 0) with All 2, M 2 =

0, (0, L 2) with Al1 = 0, 112 = 26.

5) L 2 < L, < 0, the integral region is divided into (L 2, LI) with All -, M2 =

-26, (L 1 ,0) with All = 2, A"2 = -26.

6) L, < L2 < 0, the integral region is divided into (L 1 ,L 2) with All 2, M 2 =

0, (L 2 , 0) with'M 1 = 2, Ml2 = -26. careful manipulating of these six cases c;in lead

to a general integral form in 77 direction:

d77 = + J dt7 (50)
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In which the first integral has: M, = -2, A1 2 = 26. and the second integral has

M 1 = 0, M 2 = 26. Now

= fckJ IL Adq (51)

fJ2 = jo d [j Bid?? + L B2drij (52)

wherew A - , B 1 =- B 2 =- (53)
2rA2 ' 7rA

2

Now 01 and 02 can be rewritten as :

1 = d 2 AG1 (x, , y, r7)di+- 4 [j' B 1 J B 2]G2(x, , y, t7)dq (54)

02 = j d J AGI(x, y, r)d77 j d[ B, + j B 21G 2(x, , y, iq)dq (55)

The time dependent horizontal velocities can be calculated from the streamfuuc-

tion

I u, = -011/9

V1= 8¢,l/ax

U2= -190214Oy

V2 = OV'/aX

where

-k (56)
,9y

A [G,(O, , y, L 2(x- ))- G,(O, , y, LI(x- ))d

- J [BG 2(O, ,y, LI(x - )) + BIG 2(O, ,y,L 2 (x - )) + B2 G2 (O, ,y,O)]d

- (57)

,9y

A J [G,(O, , y, L 2(x - C)) - G2(O, C, y, LI(x - ))d

[f [BG 2(O,Cy,Li(x - )) + BIG 2(O,,y, L 2(X - B2G2 (, ,y,0)] d002 , ,y O)d
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O4'~ -(58)
ax -L OL(r - ) O2(X -

[ "x---GO, - -" x - -G,(O,O,y,L,(x - C))]dC

+f ¢[B a,(x-0G2(0, C,y, L,(x - B,))( -BI G2 (0, L 2, (x - ))] dax x

( a) 2  (59)
Ox

d- Li - L ~

A f L (x-l-+ G,.,uy,L2 (x a =L2 (X , l(0, 0, y, L(x -

JorO

6 [ LB - (, ,_ .L1Q --.) ,,
The ax OLa G 2 (0, , y, L -

Teassumption that the disturbance is periodic has been used to derive equations
(58) and (59).

Once we know the solutions of the horizontal velocity caused by the vorticity

anomaly, we will focus on the evolution of the vorticity fronts L, and L2. The

governing equations for L, and L2 are

dL, -aL OL,
V= dt = a '+(iii + u)- at y Li,,i 1, 2.

or

- Oxa~ - (ii- V)y2 ~ at Y=L, i=1, 2. (GO)

Substitute (56) , (57), (58), (59) into (60) yield:

a = ' ( +-'9--2-I- LA (6 1)
Ot Ox Oy ax Ox

A= Aj( LI(x - OL,(x) )I0 IxL~ )d

A f L2Ox O L x) )GI (0, , L(x), L2 (X -

- AJ (~-?x - a)_ Li(x)
Ox Ox. -) G2 (0, L I(x), L 1(x -

" BL(OL2(i - OLd1 x) )G2 (0, L, L(x), L(X - d
+ Bx Ox
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+ P2 G2(0,C LI(x), O)dk - _jLjiL(x)

OL 2  0Ok2 + L 2 0L 2  ei\ L2 (62)
at ax Oy Ox ax

= A (OL - OL2(x))Gx(O, L 2(x),Li(x - C))dC

Oz Ox0j(L x a)O2x)G(

l-a(,L(X- 2) )G (, L 2(X), L 2(X - )d

-bB (Ox OLx))G2(O, C, L 2(x),L 1 (x - ))dC

6B, I(OL ( .-2 ) OL2(X))G 2(O' , L 2 (X),L 2 (X -

+ 6[-B 2  G2(0, C, L 2(X),O)dC + e- IL2 1 IO)X

(61) and (62) are the principle equations for the evolution of the vorticity fronts of

Ll and L 2. They are quite complicated nonlinear equations and can be solved by

numerically work or by further simplification. But before we carry the work further,

let's have a look at each term in (61) and (62) and try to understand its physical

meaning. This will help us to make a proper scaling and asymptotic approximation

to the equations.

First, recall the Green's kernel solution in (40) and (41), terms involved Green's

function G1 represents the contribution from the barotropic component, ternis in-

volving the Green's function G2 represent the contribution from the baroclinic com-

ponent. Terms with aL,(,-U comes from the vi terms which represent the induced

motion in the y-direction caused by the potential vorticity anomaly. Terms with
BL,(x) come from the ui term and represent the advection in x-direction caused by

the potential vorticity anomaly and the basic flow, see figure-5 In Green's function

Li

Fig-5. Sketch of the effect of induced velocities caused

by the vorticity anomaly on the vorticity fronts Li. OW-0
represents the induced motion in y-direction, ! repre-

seats the advection in x-direction.
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Gi(x, y, Li(x), Lj(x- )), the Li and Lj mean that the vorticity front Li at the point

x is effected by the vorticity front Lj at (X - ) as shown in figure-6, i = j means

that the effect come from the same front and i 0 j means that the effect comes

from another front.

.----. Lix) -. .. ,~xI

Fig-6. Sketch of the interaction between vorticity fronts
Lj(z) and L,(z - f).

To solve the equation analytically, further assumption and simplification are

needed to deal with this complicated nonlinear structure of the integrands. Us-

ing the linear theory as a guide, we look at the time evolution of the vorticity fronts

with finite amplitude, long wave length and slow time variation. This leads to:

X = ex (63)

(64)

K 2v (65)
ca

T ept (66)

Lr(x - ,t) = l(X - (,r) (67)

In which X, C, K, r and 1, are all order 0(1), and e is a small parameter, e < 1.

This small parameter will be linked to the depth ratio 6 after we give a proper

asymptotic expansion and scaling. p is an undetermined number here and will be

decided after the scaling.

By (63) and (67), we have:

I
I
i
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OL (x - , t) Ol (X - , )

Ox OX

in which we assume the derivative of the new varibable is order 0(1), this means

O64(X -1,0) (1) (68)
ax

together with (65):
OL~(x- ~,~d -2,,/K ol,(x - C,r.d-

- OLi(x t) d 2 d( (69)

Asymptotic expansion is carried to each term in the principle equations (61) and

(62). First , look at the Green's function G1:

G1 (o, , L,(x), Lj(x -

ln(cosh(Li(x) - L 3(x -)) 2r - -Cos 2)
a a

= ln(cosh EK(l,(X) - li(x - C)) - cos (K)

ln(1 - cos K( + 1f2K2(1(X) - j(X - )) 2 )

S- K 1 2K2(1,(X) - Ij(X - ()) 2

in( 1- cosK)+ 1 - cos IK
;z: ln(1 - cos K() + O(e2 ) (70)

This shows that the leading order of the Green's function G, is independent of

the values of the front Li, so the first two terms in equations (61) can be rewritten

as:

j-21/K[(8(X_--) Ol(X) o12(X -0 all(X)

. " aX ) 5 ln(1- -cosK )d

- f-21/ ( all (X -0 (912(X - )ln(1 - cosKC)d (71)

This form clearly shows that the nonlinear effect of the vorticity front Li only

enters at second order O(e 2).
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A similar calculation on the first two terms of (62) gives the same formula as (71).

This means that the contribution from the barotropic component to the evolution

of the upper layer vorticity front L, and the lower layer vorticity front L 2 are equal.

The baroclinic component of the Green's function G2 is

G2(0, , Li(x), Lj(. - ))

= Ko[y( 2 + (L,(x) - L3 (x)) 2 + 2e Ljx(L,(x) - L,(x)))

+f 2(2 3X - -Ljxx(Lj(x) - Lj(x)))' 12] (72)

in which Taylor series expansion in powers of is used.

For i = j, (self induction), equation (72) becomes:

G2(O, , Li(x), L,(x = fo[-y(J I +tEL' x)] + 0(0 ) (73)

For i /

G2(0, , L,(x), L,(x - = Ko[hI 2 + (L,(x) - Lj(x))2 ) ] + 0() (74)

Equation (73) can be further simplified by introducing the modfied Bessel function

definition:

K.() = jo 0 dO cosh(n)e - 'ch(O) (75)

so now (73) becomes:

(-Y(j I + -%111

2
10dOe -(k(I+ 4 12x)) cosh(a)

d~e-.ItjcoshO~j _ 
4 e21coh0

- .' a0 2 'Xcoh6

- Ko(7 I)-je2 lIxK~212K l ) (76)

Substituting (76) into the third term in (61) yields:
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2 2 2

B / 0[-el-E xx + -- -1lxxx[Ko( i x
e3B ,Oo
-3 B xxX go I)d + 0(e4 )2Bl, xx oo

73 / f02Ko()dC + 0(C4)

e 31xxx + O(f4) (77)
275

Again a Taylor series expansion is used. The integral involves terms like llxjt

vanishes identically because the integral is odd. The final step of the evaluation

comes from the formula, (see Pratt and Stern, 1986):

jo 2go( )d = 7r/2 (78)

The fourth term in (61) can be evaluated by inserting (74):

B, f J(L 2 (X ) OL 1 (x) )G2(0, , LI(x), L 2 (x - )d
_00 Oxax

7Y2 _(l2(x-) O ))Ko(Y/2 + (LI(x) - L 2(x)) 2 )d (79)

We are not going to evaluate this whole integral any further but just keep in mind

that this term is order of 0(6e) or smaller if we use the result of (78) to estimate

this integral.

The last term in equation (61) is:

(B 2  G2 (0, , L 1, O)d - e LIIr)_

100rf_ K'.(-yV'V + (Li (x) - L-2 (x)) 2 )dC

= ~eILI N3y all

= - L y8 + (be) (80)2 7
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The evaluated of this integ,'al comes from the formula:

1f 0 [ (a- z)2 + F, dz = (re8bI()

Again, this integral is order O(be).

It is easy to perform the similar process to evaluate each integral in equation (G2).

The major difference of equation (62) is that many of its coefficents are a factor 6
smaller than those in (61) so the order of these integrals are:

order of the first two terms are b

order of the third term is be

order of the fourth term is 62 E3

order of the fifth term is 62e The righthand sides of the equations (61) and (62)
are

- -e i=1, 2 (82)

Now, we have evaluated all the integrals in the principle equations. It is timc to
assemble them together and scale them. We write down the order of each integral

term as

For equation (61):

P= 6+ f 3 + 6e + be (83)

For equation (62):

f p = 6 + ble + b6f 3 + 62f (84)

Since the basic assumption is that both 6 and E are small, the dominant ternis in

(83) are the first three terms and the dominant terms in equation (84) are the first

two terms, so that:

ep -- e 3 (85)

So we have p=3 and 3 = b. The time evolution scale and the vorticity front length
scale are now related to the depth ratio S as we anticipated. It is interesting to note
that the relationship are exactly the same as we obtained in the linear theory .

I
I
I
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Another interesting thing from this scaling is that the time evolution scale is
proportional to the wavenumber as the cubic relation f - e3 in both linear theory

and finite amplitude theory. This relationship also was found in Pratt and Stern

(1986) 's theory when they obtained their path equation. Althought their model is a

11 layer model and the amplitude of the disturbance is large compared to the radius

of deformation. The common feature of these three models is that they all deal with

long waves whose wave length is much larger than the radius of deformation and

the only length scale parameter involved is the wave length. It seems that the

amplitude of the disturbance, whether it is infinitesimal or finite or large, does not

really matter here. It is the wave length scale that decides the time evolution scale.

Is this scaling relation only true for these models or does it implies some kinds of

more general relationship in the long wave theory?

The final simplified equations after droping out the higher order terms are:

Ol _ 1r-2?r/A (1 1 (X - () _I 2(X - '))n(1 - cosK)d xxx

O r_ 2- r_ _ _ _ JO lox_ __ a')lxxx o K ) ( (86)

O a 2rl O21 l X O X 2 (
012 1 a21/rfihi(X- ) a2(X - )ln(l - cosK()d( (87)

Or 21rJ0 1k ox OX
or

all a1 +b 1 lXXX (S8)
O OT 2

Equations (87) and (88) are my major result on this work. They are the governing

equations for the time evolution of the vorticity fronts L1 and L 2. The first impres-

sion is that the equations are linear although they describe the finite amplitude

wave motion. To understand these equations, let's have one more look at each term

in these equations. The term on the righthand side of (87) is the contribution of the

barotropic component. Compared to the first two terms in (62), the 8 terms

remain but the terms vanish. This means that the contribution to the evo-

lution of the vorticity fronts mainly comes from the y-direction induction velocity

vi while the effect on the x-direction advection cancel each other so the total effect

is of smaller order. If we remember our long wave, finite amplitute assumptions, it

will be more easy to understand this by looking at the figure-5.
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The elimination of the last terms in (61) and (62) means that the potential vor-

ticity anomaly produce a horizontal x-direction velocity that just cancels the affect

of the basic flow V;.

The second term in (88) is "I. Its physical interpretation is unclear now

but at least we know that this term comes from the contribution of the baroclinic

component. It should also be pointed out that it is this term in the scaling equation

(83) that decides the proper order between the 6 and e and the time scale EP. So we I
can say that it is the baroclinic motion links the scaling between the wave length

scale and the time evolution scale and it is c,e barotfopic motion tihat lEnks tle

depth ratio b to the wave length scale, or wavenumber c.

Now let's look at a simple solution of equations (87) and (88). Assume that

the initial vorticity fronts have finite amplitutes and sinusoidal forms, that can be

written as:

li = lioe k( x - c- ) i = 1, 2 (89)

Substituting (89) into the right hand side of (87) yield:

1 1-2/K iK(lio - 120)eit(X-c)e - iI ln(1 - cos K)d(

Z' )e (X cr) -2ir
=-(110 - 120)e -  e- i( ln(1 - cos ()d(

= 1(11o- 12o)e K (X -c - ) (90)

The evaluation of this integral involves several variable transformation. Now (87)

and (88) become:

110 + (Kc - 1)120 = 0 (91)

/10(1 + Kc - - 120 = 0 (92)
2'

So the dispersion relation of c is

2c 2 - Kc+ K = 0 (93)
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One can recognize immediately that (93) is the same dispersion relation obtained

in the linear theory (23), so the most unstable wavenumber remains the same,

and most of the discussion in the last part of section one is valid here also. The

identical of the scaling and the dispersion relation of both infinitesimal amplitude

and finite amplitude theories gives us a simple, continuous picture of baroclinic time

evolution from the infinitesimal disturbance to the finite amplitude vorticity fronts,

see figure-7. initial state
infinitesimal amplitude

Linear theory

finite amplitude

Finite amplitude

asymptotic theory

_..- arge amplitude

Large amplitude theory 77

Fig-7. Three stages of the time evolution of the dis-
turbance. The first stage is the infnitesimal amplitude
described by the linear theory. The second stage is the
finite amplitude described by the finite amplitude asymp-
totic theory. The third stage is the large amplitude which
needs some new theory to describe it.

At the initial state, assume there is an infinitesimal disturbance with a broad

range of wavenumbers. According to the dispersion relation (23), those waves with

wavenumber k of order 61/3 are unstable and begin to grow. Shorter waves are stable

and very long waves grow very slowly. As time goes by, the most unstable wave
with wavenumber k,, = KIm.51/ 3 dominates. When the disturbance amplitude is no
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longer infinitesimal that the linear theory is no longer formally valid, then our finite

amplitude asymptotic theory comes in. At this stage, The new theory provides

such an instability mechanism that the wave with wavenumber around km still keep

the fastest growing. Because the equations describing this time evolution have

linear forms, a sinusoidal front can preserve its sinusoidal form during this growing

without any harmonic distortion. This finite ampitude front can keep growing untill

the amplitude is comparable to the wave length scale that the basic assumption of

small slope (68) can not hold any more and then a new large amplitude theory is

needed for this stage of evolution.

In the Gulf Stream system, with the consideration of above discussion, the most

possible Gulf Stream meandering legnth scale should be in the range related to

the depth ratio 61. If we choose the typical 6 value in the Gulf Stream system

as 6 = 1/5 and the Rossby defomation radius as L" = 50 ki. then from the

instability growing curve in figure-2, the possible meandering scale should be about

300 - 1000kmn which is not so far away from the reality.

The stability of the very long wave , which means k < 63, is worth one more

look. Note that in figure-2 when K --+ 0, the growth rate approach zero also. This

means that a very long wave actually is stable. Recalling the order equation (65),

this means when e < 63 the third term with e3 is no longer the dominant term and

the remaining two terms lead to:

all_ 012

Or Or
10 21r/ ( al) (12(X )ln(1-cosKo)d( (94)

27r IO O(X

Equation (94) shows that two vorticity fronts have exactly time evolution behavior

and the dominant motion is totally barotropic. Because the baroclinic component

disappears along with the baroclinic instability mechanism so that the very long

wave motion actually is stable.

3 NUMERICAL CALCULATION

We ran a numerical calculation to test the finite amplitude asymptotic theory in

section 2. The numerical model we used was run by Stephen. P. Meacham of M.I.T.

I
i
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His modcl also has a pcriodic disturbance but the depth ratio 6 is nlot rcstricted to

small values. The parameter set we used was:

6 = 1/125, E=1/5, K = 1.26

The initial disturbance is given as a sine wave, with amplitude Li = 0.8, i = 1, 2. The

wave length is 24.9. Note that although the amplitude divided by the wave length

is very small, it should be emphasized that the amplitude is not small compared to

the width of the basic flow structure as shown in figure-Sa,b.

Y .Yapltd

infinitesimal 
amplitude

Fig-8a,b. The comparison of the infinitesimal distur-
bance and the finite amplitude disturbance to the basic
flow structure.

Figure-8a is the infinitesimal amplitude approximation for linear theory and figure

8b is our finite amplitude case. We can see clearly that in fig-Sb the vorticity front

displacement is far from the center of the basic flow jet and this is the measurement

of nonlinearity.

The depth ratio 6 is a small number too which is a little far from the the real

ocean, but it is still closer to the real ocean than the 11 layer model which has

depth ratio 0.

Numerical (lyeacham's) results for the time evolution of the two vorticity fronts

are shown in figure-9:
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The solid line is the upper layer front and the dashed line is the lower layer front.

The numbers below the curve are the nondimensional time t, which is related to

our slow time unit r = t/125.

This result shows that both vorticity fronts grow with time and the sinusoidal

wave forms are preserved up until time (t = 300) in which the amplitudes grow
without much harmonic distortion from 0.8 to 4. This behavior is just what the

finite amplitude asymptotic theory predicts and explains.

•2 .V*UI 0MW " th-

Fiue10 shows th maia mliue",suietcuv.Aan thesldln

S400 10 tmu

Figure-10 shows the maximal amplitudes versus time t curve. Again, the solid line

is the upper layer front and the dashed line is the lower layer front. The asymptotic

theory predicts that the two vorticity fronts grow with the same rate that I L 1= 1.

This is shown by the near identical LI and L 2 curves up to time 300 - 400. After

this, they begin to separating.

The dashed-dotted line shown in figure-10 is the growth rate curve obtained

from the exact dispersion relationship (20). The dotted line is from the dispersion
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relationship (21), which is the asymptotic form of (20) in the limit of small 6. As we

can see, up to time t = 300, the numerical result and the exact dispersion relation

prediction is very close.

So up to time 300, the overall numerical result agrees very well with that of the

theoretical prediction and hence verifies the theory.

The reason why the numerical result differs from the theoretical result after t=

300 is due to breakdown of our basic assumption. As at the begining, the maximal

slope, or the maximal value of the -6L is about 0.2 , but at t=300, this increases toax

0.8 - 1 and our basic assumption that it should be small is obviously being violated.

At this stage, the higher order nonlinear terms must be taken into acounted as they

are no longer small.

One will note that the two theoretical curves (dashed-dotted line and the dotted

line) give quite different growth rate estimates, the reason being due to the asymp-

totic expar.sion. On the limit of the very small 6, they are supposed to be identical.

So for the finite amplitude asymptotic theory, when 6 is not very small, it probably

will not be able to give a good quanitative growth rate estimate. however it does

give a good qualitative explantion of why the finite amplitude front can continu-

ously grow without much harmonic distortion and why the exact linear dispersion

relation fits so well with the numerical calculation.

4 CONCLUSION

We have developed an asymptotic equation for the finite amplitude, baroclinic
wave motion subject to the following assumption

1: the depth ratio & is small

2: the disturbance amplitude is of the same order of deformation radius

3: the disturbance is periodic in the x-direction

At this level of amplitude, there are no nonlinear terms so that the sinusoidal

disturbance can grow without any distortion. The numerical calculation verifies

this up to a certain time until the amplitude versus wave length is no longer small.

Now some questions arises:
What determines the large amplitude disturbance?

What determines the final stage of the amplitude equibrium?

Is there no equilibration?

N
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If we look back to the complicated nonlinear prinicipal equations (61) and (62)

and the simplified asymptotic equations of (87) and (88), we can see that the simple

form of (87) and (88) suggest that it is quite possible to go one more step to develop

a relatively simple nonlinear theory for the next stage of evolution in which the

amplitudes of the disturbance become comparable to the wave length. This-stage is

quite similar to that of the theory of Pratt and Stern (1986) in their 11 layer 'path

equation' model which has large amplitude and small radius of curvature. Although

our problem is two-layer with two vorticity fronts interacting, the small parameter

6 will enable us to use the asymptotic expansion to simplify the equations. In

addition, they don't have a mechanism to generate the large amplitude disturbance

in their model but assume there is a such initial disturbance. In our work here, we

have an instability mechanism to generate from the infinitesimal amplitude to finite

values. So it is quite worthwhile to go to this next stage to understand the whole

instability evolution process, and that will form the basis of our future work.
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Barotropic Boundary Layer Separation Regimes

R. Vance Condie

1. Introduction

In this report we use a regional numerical model to investigate boundary layer

separation regimes for a steady, barotropic, quasi-geostrophic fluid. The steady

potential vorticity equation is written as:

J(0, q) = KV 2 q where q = V 2 b + py. (1.1)

As general circulation models incorporate more complete sets of physics, several

features in the outflow region of the western boundary current become dominant

for both steady and time-dependent simulations. The figure below shows the time-

averaged circulation in a one layer quasi-geostrophic model.

C esse,e r lY,Y..A-9 (7 Pa q 1'4)

.O 1 .

x

Figure 1.1

The dominant feature in the figure above is the recirculation cell in the north-

west corner of the basin where the boundary current separates from the coast. There
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is also a region, marked II, which is reminiscent of Moore's (Moore 1963) theory of
vorticity dissipation by a series of stationary, damped Rossby waves. These features I
are not unique to the one-layer model and are observed in time dependent numerical
simulations with multiple layers for both slip and no-slip boundary conditions (per-
sonal observation of five and two layer QG simulations done by W.R. Young; and I
in a barotropic QG model, Panteleev(1984) respectively). A review of numerical
experiments as well as ocean observations relevant to recirculation may be found in I
Cessi et al, (1987).

The steady, one-layer, quasi-geostrophic model has the advantage of being ana-

lytically tractable, and we consider the inertial bound ry layer for different upstream
(outer) conditions in sections 2 and 3. In section 4 we use scaling a:guements t6
determine the structure of a viscous sublayer imbedded within the inertial solution.
At the end of section 4 we derive an analytical solution for the boundary laye in
the limit where the viscous and inertial layers merge. In section 5 we investigate the
effect of a northern slippery wall (V 20 = 0) on the separation as well as an outtlow
condition well below the northern wall. Preliminary results seem to indicate that
dynamics of the separation region for the two cases are different. In the case of
the boundary layer reaching the northern wall, anomalously low values of potential
vorticity are dissipated in a well homogenized recirculation gyre. For runs with the
outflow condition well below the northern boundary we find that the fluid dissip, tes
the excess potential vorticity anomaly by setting up a damped series of standing

Rossby waves.

I

I
I
I
I
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2. Inertial Boundary Layer

In this section we determine the form of a steady, inertial western boundary layer

for a prescribed upstream velocity profile. The steady, inviscid, quasigeostrophic

potential vorticity equation is

J(O,q) = 0, (2.1)

with boundary conditions

0,(0, y) = 0, 0(upstream) = *(y). (2.2)

In particular, we consider the case in which

b*(y) = 0, (Y for y _ 0 (2.3)

-Lo
U~ -POO

1/* Y

In the boundary layer u < v and 0/Ox > 0/Oy, so that the relative vorticity is

approximately
OV 'Ou 'OV

TX "- TYz.

Equation (2.1) in the boundary-layer then reduces to J(O, 0., + fly) - 0 or

q ; 0.. + fly = F(b), (2.4)

where F is an arbitrary function of 0 to be determined by the boundary conditions

on the flow. Specifically, for large x, 0,b. "- 0 and we have

fly = F(O&). (2.5)

Inverting (2.3) for y = y(b) we see that

IP
f= F(O) yielding 0" + fly = fly* (2.6)

The case p = 1 corresponds to Fofonoff's (1954) solution for a uniform westward

flow in the interior. It is useful to repeat that solution here to outline the method
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of solution for all p, and the free streamline solution in the next section. If we let

n = l/p, and a = fyY/Co" then (2.6) becomes I

0!zz + py = ao", 0(0) = 0, O(X --+ .o, y) = (2.7)

Consider a solution of the form ¢ = (y/V*)n # (') where tj= x/(y/y*)a, then (2.7)

is
0 11 + fy = o ((,,). (2.8)

Choosing 9 = (1 - n)/2n and 17 = (y*/,)(1 - n)/2n (2.8) becomes

S",+ py - a¢"=O0, 0(0)=0, O(tl --+ 00)= . (2.9)

We integrate (2.9) resulting in

1 +fly- On+1 = Cn (2.10)
5¢~~ +,y4 1~l

where C, is determined from the interior condition, using the previous definition

a = */o-, as
an = C.. (2.11)

At this point the solution of (2.10) is reduced to quadrature:

~ 2a) (* = do (2.12)n ,-+ 1 0 (on+, - (n- + 1)0.no + rico"+l)  2 .2|

and for the case n = p = 1, (2.12) reduces to

=(d)qx = 10 (0-d. )  (2.13)

or = 1 - -e- / ') where 6 (2.14)

It is necessary to only keep the decaying solution in x to satisfy the interior boundary

condition for large x. Pedlosky (1987) derives this same result for the case p = 1 I
where 61 is the inertial layer thickness. I
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It is also tractable to solve the case for large n, in which case the behavior of

the solution is quite different. If we consider the limit as n --+ oo, then ao" tends

to zero and (2.9) simplifies to:

0" + fY" = 0, 0(0) = 0, 0(,7 --, oo) = 0., 0,,(,7 --, oo) = 0. (2.15)

The solution is immediately obtained by integrating (2.15) twice

0(17) = -1/2),7 2 + C1 ,7 + C 2. (2.16)

No normal flow at the western boundary, q = 0 gives C 2 = 0, and tk(x, y) with the

remaining constant C, may be rewritten as:

4,(x,y) = -1/ 2 ) 1x 2 (X)+ Cix(_L). (2.17)

The remaining boundary conditions are satisfied on a free streamline, x =(y),

such that

0 (e(y),y) = o, and VO (t(y),y) =0.

This solution is shown schematically below:

Figure 2.1

To determne 1(y) and C1, we solve simultanleously:

,((),* ) =-1/2#y* +. (2.18)

Y :O
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--Y), Y)=- *( ( =0 (2.19)

The result is:

A= )o - - )2)i f (2.20)

O(x, Y) = 0o if > I()

where

1()= (2.21)

Interesting characteristics of this solution are that the free streamline is contracting

towards the western wall as y-1/2, and consequently to conserve mass the velocity

is increasing as y 1/ 2 . The n --+ oo limit corresponds to p --+ 0 in (2.3). For p : 0
the transport along y = 0 becomes infinite and the solution breaks down in the

sense that there is no longer an inertial boundary-current along the western wall.

This analysis suggests anotlier class of solutions in which the incoming westward

velocities decrease faster than algebraically as y -- oo and have finite transports.

3. The Free Streamline

The methods of the last section can be used to solve a slightly more complicated

version involving a specified upstream velocity proffle which is limited in its y extent.

We pose the problem as shown below with given inflow profile 0* and undetermined

free streamline boundary y =(x).

Ii

Figure 3.1
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J(O, V 20 + py) = 0. (3.1)

with boundary conditions

(x-- oo,y) = OI(Y), (x,e(x)) = O&(IJ), b(xO) = O(Oy) = 0.

It is necessary to apply a second condition along the free streamline to determine the

equation of the free streq ie itself. It was pointed out during the GFD lectures

that the following treatment in solving for the free streamline is only valid in the

region of large y/y* . That is, we assume that any small velocity discontinuity in

the inflow profile will become subdominant in the boundary layer analysis for large"

values of y/y*. We solve this system for uniform inflow conditions:

0*Y .0 :5Y Y- (3.2)

u= -b= -* 0: < y Y*. (3.3)

In the boundary layer, x < e-1 (y), the relative vorticity is again dominated by

v., and we write (3.1) as:

J(0, Oz + fly) = 0 (3.4)

Using the property that the potential vorticity is conserved along streamlines we

have

0.. + fy = F(O) = # (3.5)

Equation (3.2) has been inverted for y - y(O) in the inflow region where 0,zx) = 0.

Defining p2 = fly*/¢O (3.5) is written as:

z + fly - JA 20 = 0. (3.6)

We now proceed analogously to the previous section, but allow a y dependence in

the function 0. That is we try a solution of the form 0b = (y/y*) ¢(x, y). After

making this substitution we have the system

" + #- s 2 # = 0 (3.7)

0(0,Y) = 0, O(x, Ax)) L -, ¢(=,e(x)) = 0.
" zxV)

yI
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dent coefficients as

(1 + B(y)coshuz + A(y)sinhpx). (3.8)

The condition 0(0, y) = 0 sets B(y) = -1 and application of the two conditions on

the free streamline are sufficient to determine both A(y) and the equation of the

free streamline, y = Ax):

-*= 1 - coshpt- 1 (y) + A(y)sinh t-(y) (3.9)

0 = sinh pf- 1 (y) + A(y) cosht-' (y) (3.10)

The algebra is a littly messy but we find

2 2cosh x

y = - Y , and e(x) = y coshl-- - 1 (3.11)

The solution including (3.11) is

(XY) = ~y. (1 - coshpx + 2g. - sinhpx). (3.12)

One feature to stress in the solution above is the presence of an inertial bound-

ary current beyond the point of westward zonal interior velocity. In fact, as long as

there remains no interior velocity the stream continues up the western boundary.

In limit of large y and x < = (€o/3y,)1 2 we expand e(x) as

y = t(X) $ - ,2' (3.13)

which shows that the inertial layer continually contracts, i.e.

2 -1/2 (3.14)

By continuity and since u < v in the inertial layer, we see that v(0, y) goes as y'/2

and is accellerating up the western boundary. This property will be considered
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in the next section where we append a viscous sub-layer to the solution. Presently

however it is shown that for any inflow velocity profile 0,(y), with the condition that

the zonal velocity vanishes at y = y* and having finite transport, in the asymptotic

limit of large y the free stream shrinks like y-1/2.

Consider the schematic diagram of the problem below:

Figure 3.2

Prescribing the upstream velocity u = - Of/ 8 y on ye(O, y*) we determine the

boundary layer properties of the following system.

J(O, V 2 0 +,8y) = 0 (3.15)

0(0,y) =- (X, 0) = f(0), O(e(y),y) = f(y*)

For regions in the western boundary in which the relative vorticity is dominated by

vZ , (3.15) reduces to

0,v + fly s F(O) (3.10)

since potential vorticity is conserved along streamlines. We determine the form of

F(O) from the upqtream condition as:

F(O) = f-f 1 (0) and y = -'(O),

and (3.16) becomes 0/," + fy =Of-, (0). (3.17)

If we now let 4 = f(0)0 then

f(0)0., + fly = f/-I(f/(0)0) (3.18)
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(o,y) = O(Xo)= 1, -(WY),Y) f(O")

We now consider the properties of the system in the limit of large y > yo. Be-

cause fif-'(0) is bounded by (0,y*) , the term on the rhs of (3.18) must become

subdominant, thus the solution will behave as

. z2 + CIX + 1 (3.19)-i 2f(o)

using 0(0, y,) = 1. The equation x = t(y) and constant C1 may be determined as in

the previous section by simultaneously satisfying the conditions

f(t(y), y) = f(y*), and 0, (e(y), y) = 0

and we write the solution, with 0. f (y*) - f(0):

=(Y) = yX + (2fly#o)Ix + 1 (3.20)

whro), (3.21)

We have shown that in the limit of large I> /y , the inertial boundary layer

shrinks as y-1/2, and by differentiating (3.20) with respect to x that the velocity

along the wall increases as y// 2 . The next step in the study of the western boundary

layer properties is to append to these solutions a frictional sub-layer, this is done

in the following section.

I
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4. Frictional Layers

In this section we pursue the effects of viscosity on the purely inertial flow. Treat-

ing the viscous term in the steady barotropic potential vorticity equation as a small

perturbation to the free stream solution we consider a balance between the north-

ward advection and diffusion of relative vorticity along a western no-slip boundary.

The relative vorticity is again dominated by v, so we consider the boundary-layer

approximation

J(0,tk,)+ , = +.80 (4.1)

Integrating this equation once we have:

J( , 0) + 00 = r-O", - PO, (4.2)

where 40 is the stream function evaluated on the free streamline. In the viscous

sublayer we have the balance

JA0, .) ;z r-O.. (4.3)

and in the limit of large y (4.2) reduces to a member of the family of similarity

solutions given by Falkner and Skan (Batchelor Ch. 5.9). In the previous general

case 0,(0, y) = ( 2 #¢0 )i/2y 1/2, and we are able to obtain a similarity solution in the

viscous sub-layer of the form

(2 14/4 /f,) 2# 0  1/4 X 44
| ¢ = (K )fv) ,7 = -j-) x.(4)

We use the form of the similarity vari-.ble q to suggest that the viscous sublayer

is growing proportional to yl/4 for our general inertial layer in the limit of large y.

This suggests the possibility of the inertial and viscous layers merging.

Two questions immediately arise in the analysis of allowing viscosity in the

presence of the purely inertial boundary-layer. 1. How does the viscous sub-layer

grow for intermediate values of y? 2. At what point does the sub-layer intersect

the inertial layer, and what might be the form of solution there.?

To study the viscous layer scaling in the region y > y*, we return to equation

(4.3). Let 0, be the inertial layer stream function. The advection of relative

vorticity at the outer edge of the sub-layer then scales as

V)1.J('0)Y)(-4
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and the diffusion of relative vorticity at the outer edge of the sub-layer scales as

,/, t ¢(0,y)
K-ZZX t, 0_ Y---) (4.5)

Equating these two scales determines the sub-layer scaling:

bV " iy Y2 ORW

602 0 ,/, y - R where Re = (4.6)

Using our analytic solution (3.12) we find

(6 K 1/2 1/(47[ 0 ) (x2 11/4

The limit for large y is as expected, and 6, grows as yl/ 4 , but in the intermediate
limit y > y* we see that the viscous sub-layer grows faster, as y1/2 . We visualize
these relationships in the figure below, and answer the second question, at what

point, A, do the viscous sub-layer and inertial layer merge.

Figure 4.1

In the limit of y > y* (4.7) may be approximated by

I(2k(d)) s/,. (4.8)
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Equating this expression with equations (3.21), the asymptotic limit of the inertial-
layer pinching, at y = A we have A = (8./3K2 )1/3 (0. = f(Y - f(O)) and
interestingly find that the boundary layers merge at

6.()= 6j,(A) = 6 1/ (4.10)

where 6M is the Munk viscous-layer thickness.
We now seek a solution to (4.2) in the regime where all terms may be important

for y > A. Choosing a solution independent of y the Jacobian term vanishes and
we write the solution as a linear combination of the particular and homogeneous-.

solutions, the result is

W = 00 1 - -, 2 6m sin + cos 2 3)" (4.10)

We now combine sections 3. and 4. to formulate a scenerio for the evolution of
the western boundary layer as it turns and flows northward. Initialy, close to some

latitude y*, the inertial flow bends and accellerates northward due to the presence
of the western wall, advecting with it anomalously low values of planetary vorticity.
Due to viscosity in the system, high values of relative vorticity are generated at
the wall in a viscous sub-layer which subsequently expands out into the inertial
layer. As the stream accellerates further up the boundary we found that the growth
rate of the viscous-layer became proportional to y1/4. At some latitude, A, the
dissipation of relatively high values of potential vorticity through the sub-layer are
able to completely balance the advection of planetary vorticity by the stream, and
a non-accellerating Munk layer solution was found (4.10). This layer, independent
of y, then continued up the western boundary. In the steady numerical model to

follow it is seen that unless the stream comes into contact with a northern wall or the
constant value 0. qf the interior fluid is changed by prescribing an outflow condition,
the stream will not separate from the western boundary. We thus conclude that
there is no internal mechanism in a steady, barotropic, quasi-geostrophic boundary
layer without bottom topography that will allow the western boundary layer to

leave the wall.

5. The Regional Model
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It has been demonstrated that a barotropic model is able to simulate the es-
sential features of the recirculation transport in eddy-resolving general circulation

models (Boning, 1986). In this section we simplify the problem a step further
by numerically simulating the separation region of a western boundary current.

The numerical model uses Newton's method to solve the steady, one-layer quasi-

geostrophic potential vorticity equation, (1.1), with dissipation modeled by, lateral

diffusion.

We choose the region outlined in figure 5.1 below as representative of both

the boundary layer region studied in sections 2-4, and the outflow region. The

meridional extent of the region was chosen as 1500km and the longitudinal extent

as 750km. With these choices we are able to resolve structure _ 0(10km) in the"
boundary layer. Figure 5.1b also shows the boundary conditions for the model. The
boundary layer jet is described by an analytical expression for the stream function
together with Oyy = 0. The western boundary satifies the no normal flow and no-slip

conditions. The northern boundary is treated as the southern extent of a cyclonic

gyre, zero wind-stress curl line, hence 0.,-, = = 0. It was pointed out in the GFD

talk that a true, no-slip, northern wall may be an interesting future consideration.

Two conditions are considered for the outflow region along the eastern boundary,

and we outline these expressions as well as the analytical expressions used for the

boundary layer jet below.

1P,:

. .1.

U2 0.0.41

Figure 5.1a Figure 5.1b
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The Inflow Region

The boundary layer inflow jet is prescribed initially, at y = 0, with separation

between the inertial and viscous sub-layer boundary widths. This condition is cho-

sen in order to study the adjustment region as the two layers merge. The profile is

given by:

vbx,0e-=l - e - / l v) (5.1)

- - + e - ' - e l  , (5.2)

where, for runs performed this summer, the following parameters were used.

0. = 24.3 * 10 3m2/s 6 = 74. * 103m 5V = 35. * 103 m.

The transport in the jet corresponds to 18 Sv for a 1500 m deep layer, and for

1C < 1000m 2 /s, we expect A > 0, that is, some separation between the inertial and

viscous sub-layers. The profile of the jet is summarized in figure 5.2 below.

fitflav jet

3.
.4 1. 11*

.4 3

.9.E

3 . .1l I

.3" .6

Jl IJ.. .

I S

Figure 5.2

The Outflow Region

Two experiments were run with different outflow conditions. In experiment 1.

we chose an exponential profile of the form:

0y)= ,(a) (i+ C-'/'. - . 5.3
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In experiment 2. we removed the fluid well below the southern wall by imposing:

(= a( 1 - tanh y 1 YC (5.4)2 &/

These profiles can be seen in the form of the stream function in figures 5.3 and 5.5
respectively.

Model Results

A description of the results will be divided into two parts: the exponential
profile, Experiment 1, and the sech 2 profile, Experiment 2.
Experiment 1: Figure 5.3 shows two runs for the exponential outflow profile.
The upper two panels, from right to left, show the stream function and potential
vorticity contours for an eddy-viscosity, r, = 1000 m2 /s. The values on the contours
are non-dimensional and may be dimensionalized using the constants in Fig. 5.2.
The lower two panels are again the stream function and potential vorticity, but in

this run the eddy viscosity is reduced by a factor of almost 3 ( K = 350 m 2 /s). The
most striking difference is the recirculation gyre which develops as the viscosity is
reduced. This is consistent with the idea that the onset of recirculation is sensitive
to the ratio: (Ierley, 1987)

2(6.)1/2

'5 M (.M/3

That is, as we reduce r., r beomes larger and for some critical value r. ( 500 m 2/S)
we see that the boundary layer is non-compliant and the boundary layer significantly

effects the interior flow.

Our expression for A derived in section 4. is only approximate, and as can
be seen in Fig. 5.4, the relative vorticity along the western boundary quickly
adjusts to the Munk solution within a distance y s 400 km from the southern
wall. A lack of resolution prevented further derease in r, but from other runs it is
clear that the recirculation continues to intensify. The value of homogenized q also
decreases for decreasing values of eddy-viscosity. These decreasing values of q are
due to lower potential vorticity anomalies being advected in the boundary current
as the flow becomes more inertial. (See lerley and Young (1988) for a more detailed
analysis of how the value of homogenized q scales with varying eddy-viscosity).
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Experiment 2: Fig. 5.5 shows two runs for r = 1000 m 2 /s and , = 250 m 2 /S for

outflow paramcters Y, = 800 kin, a = 400 kin. In this case the region of boundary

current separation is very different from Experiment 1. Rather than develop a

recirculation gyre to dissipate anomalously low values of potential vorticity, the

flow sets up a series of damped stationary Rossby waves. Although not shown here,

the transition of the steady solution from the i. = 1000 m 2 /s case to K = 250 m 2 /s

is continuous in the sense that the amplitude of the standing wave grows smoothly

as the eddy-viscosity is reduced.

Figure 5.6 is a comparison between the model relative vorticity ,,:, and the

analytical Munk expression (eq. 4.10). For re = 1000 m 2 /s we see in Fig. 5.6a

that the flow in the boundary layer adjusts to the Munk type solution over a short'

distance, y , 200 km. In contrast, for the run tK = 250 m 2 /s we can see in Fig. 5.6b

that the relative vAicity of the model boundary layer never reaches that predicted
by our Munk solution. We also see in Figs. 5.5 that the overshoot of the boundary
layer, as it leaves the western wall, is increasing as the amplitude of the standing

waves increase.

6. Conclusion

A simple one-layer, quasi-geostrophic model for two regimes of western boundary

current separation has been studied. Bringing together ideas on the analytical

structure of the boundary layer and numerical results, we have shown that the
western boundary current separates in the region of a northern wall or a non-

homogeneous interior outflow condition. The nonlinear Munk solution derived in
section 4 is partially verified by considering the value of relative vorticity at the
western wall.

The most relevant conclusion to be drawn from this project is the persistance of

the damped Rossby wave solution in experiment 2 for lower values of eddy-viscosity.

Papers by Ierley and Ruehr(1986) and Ierley(1987) suggest that boundary layer

solutions are unstable for the ratio b5 i/ 6  > re, which excludes the possibility of

a Moore type solution. For this reason we remain skeptical of the stability of the

stationary Rossby wave solution found in experiment 2.

In all runs this summer, the boundary layer contracted towards the Munk so-

lution over a short meridional distance, and we were not able to model the possible

effects of free boundary layer streamlines which do not pass through a viscous layer.

Further analysis on these topics will further the understanding of western bundary

later separation regimes. In particular, one question remains which deserves im-
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mediate attention: How does the northern wall effect the high amplitude Rossby

waves?. Higher resolution experiments would allow for a more inertial flow and

hence higher amplitude waves. Higher resolution runs would also allow insight into

the role of A, the merger point of the viscous and inertial boundary layers.
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CONVECTION WITH HEAT SOURCES

Sandip Ghosal

ABSTRACT

The stability of a fluid layer to convection is studied when the medium has a
volume distribution of heat sources proportional to the mass and linearly dependent
on temperature. It is shown steady convection can occur for a class of boundary
conditions even when the background static temperature gradient is subadiabatic.
The convection then occurs on very large horizontal scales.

1 INTRODUCTION

The condition of hydrostatic equilibrium in a star is

c P - - .f - ,,

where p, p, g are pressure,density and local acceleration due to gravity at radius

r. If M and R are the mass and radius of a star,

R-IP

With

03

- -
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c=speed of acoustic waves in the medium.

Therefore any departures from equilibrium conditions in a star is neutralized in a

typical time of t = R/c -,1500 sec.-, 1 hour. Since stars are observed to remain
constant on much longer time scales, we draw the very important conclusion that

stars are in a state of hydrostatic equilibrium.

The main balance in this equilibrium is gas pressure balancing gravity. Using the

ideal gas law

-T

(k=Boltzmann's constant, 1L = atomic weight =10-2 kg for hydrogen) we have

c' = P/p = kT/, which gives T ; 10K as a typical temperture inside stars.This
temperature is sufficient to maintain nuclear reactions in the core which is the

source of the star's energy.This energy can be carried to the surface by three possi-

ble mechanisms : conduction, convection and radiation. Conduction can be shown

to be almost entirely negligible in stars. Radiative transport is always present and

convective transport can occur under certain conditions. Schwarzschild's criterion

is used to decide whether or not convection can occur in a given layer of the star.The

condition is, a layer is convectively unstable if

where Cp = specific heat per unit mass at constant pressure.[12]

In the derivation of Schwarzschild's criterion the effects of viscosity and heat

sources are left out.The motivation for this work is to try to gain some insight into
how the presence of temperature dependent heat sources affect Schwarzschild's cri-

terion.(We are trying to model the situation where heat is being generated in the

medium itself, due to nuclear fusion- a strongly temperature dependent process.)
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The question of convective stability is very important for stars. Firstly, it decides

whether or not mixing is going on at the core bringing in fresh fuel thereby keep-

ing the reactions going. Another reason is, if a region inside the star proves to be

convectively unstable, usually the convection is so vigourous that we may take the

temperature gradient in such regions as the critical gradient for onset of convec-

tion.This situation is called "convective equilibrium" The Schwarzschild's criterion

therefore decides

(a) which regions are unstable and

(b) what temperature gradient should be used in the unstable region.

Thus, any modification of the Schwarzschild's criterion would have profound impli-

cations in terms of integration of the stellar structure equations.

In this study we will be looking only at thin layers of fluids. This may be relevant

either if

(a) we are looking at high radiai modes, or

(b) we are looking at a star where the fuel in the core is exhausted and nuclear

burning is going on in a thin layer around the core.

2 THE BOUSSINESQ EQUATIONS

The basic equations expressing the conservation of mass, momentum and

energy in a fluid are

of a -~ +/A V(-)

ot S - 3)
Olt
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Here p is the density, iT is the velocity, p the pressure, T the temperature and S

the entropy per unit mass at point (x,y,z) at time t. Q is the heat gained per unit

mass of the fluid at (x,y,z) per unit time and it is specified by the physical situation.

p is the molecular viscosity coefficient and the z-axis is chosen vertically upwards.

For liquids we also have the following equation of state

where c is the coefficient of expansion. For a liquid it is reasonable to assume the

density is constant except on the right hand side of equation (2-2) where it drives

the bouyancy effects. This is the Boussinesq approximation [1]. Using

1-- s = 1Cv T . ......... (-5)

- . (kVT) + t(T)....... -2 I

where C, is the specific heat per unit mass at constant volume k(T) is the co-

ductivity and £(T) represents heat generation within the body of the fluid, (Note:

viscous heating can be shown to be negligible in such problems.)

t .....

aT . - C7- (q V,) + .(T).)

I

I
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n = k/poC,, is called the thermometric conductivity and £tL") = ftv)/L.,Equa -

tions (2-8) to (2-10) are the Boussinesq equations for a liquid with heat sources. We

will study the situation of an infinite plane parallel region of fluid. (See Fig 1) If we

write down the boundary conditions of continuity of temperature and heat flux at

a boundary and use the exact solution of the heat conduction equation inside the

solid then it is shown the boundary conditions at z=O or d within the liquid can be

written as

dB -*

where Boc conductivity of solid/coductivity of fluid.[2] When the solid is a perfect

conductor this reduces to

T ( h4o UV, Ch o f, .) ef .S tO. Y.t (2 -12.)

and when the boundary is perfectly insulating

For boundary conditions on the velocity, we have, the vertical velocity must van-

ish at the boundary
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Further we have

either

or

? t

depending on whether the fluid is in contact with a rigid surface or is free. Using

equation (2-15), (2-16) and (2-8) we also have

(free)
_ - 0.............(cz-i )I

9 0

(rigid)

Here i=(u,v,w)

3 LINEAR THEORY

Let K (1") =. 1<0 CT)

and £(r . o&(T)
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where C(T) and S(T) p- 1 In steady state, UA 0 0 and equation (2-8)

to (2-10) gives

- _ - ~* _.(3.

vj (c(~ ISv + EOS (ITS) :0.....(3-2)
KO

We will assume the steady states to be independent of x and y,

ST ().........(3-3)

When S(T) - 0 and C(T) = 1 equation (3-2) gives

where - " is determined from boundary conditions. In the

general case we will define #7 such that

d 9
01-
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If we perturb equations (2-8) to (2-10) about the steady state,

Ts, T (1) 41-TA

(3-5)

then to first order in the small quantities 8, r and u

V + + 3-)

+ fo S'(T5S &...
+. =o .-- .... .. (3-9)I

If we scale all lengths by d, all times by d2/lv (the diffusion time for momen-

tum) all temperatures by fjd (- temperature difference between top and bottom)

the pressure by pogd and the velocities by Ko/d then equations (3-6) to (3-8) become

'-- v .,, " i + . .... 3-1)

0 r OT3  d c'(TS)- V .( C ) I)

+ .l -/. 0 o3-to)

V. 0

MMMMW!
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where

E022

-0

are dimensional numbers. R is called the Rayleigh number, a is the Prandtl nium-

ber and 2 will be called the Ed number. One can eliminate u,v and 7r froM the

seven equations (3-9) and (3-10). Taking the curl of the curl of (3-9) and writing

it's z-component,

? t4

where

'4

4 REVIEW OF KNOWN RESULTS

For the moment let us take the conductivity to be constant and heat sources to
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be zero.

(-r') -- I
Then equation (3-10) and (3-11) become

L6 o__ (-

_ .(4-2)

In this section we deal only with the constant temperature and constant flux

cases. Therefore (in dimensional units)

TS ) - (3 - . .)-

where k/3=specified heat flux (in fixed flux case)

and 8 = AT/d (in the fixed temperature case. AT= the temperature diffecrice

between top and bottom.)

Therefore

TS

In non-dimensional units
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If we assume solutions of the form

then (4-1) and (4-2) gives

W ,4.R + (t k )W "4.s

where D=d/dz and - 4- . For fixed R, o, # and k equations (4-

4) and (4-5) together with the appropriate boundary conditions form an eigenvalue

problem for p. It may be shown, the eigenvalues of equation (4-4) and (4-5) are

always real. (See Chap2 of [4] also Appendix A) This is often called "The principle

of exchange of stabilities". For R=O one can show all the eigenvalues are negative

for all k. Therefore the system is stable. As R is inreased keeping k fixed, a critical

value is reached when the largest eigenvalue becomes zero. This is the marginal
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state. If one plots R at marginality as a function of k2 then for R above this curve

the system is unstable and below it it is stable.At R = t (,AC'ai-na. we have

steady convection. The case of fixed temperatures at the boundary was first studied

by Rayleigh [5]. (also see [4] for a detailed discussion of the linear theory) and this

problem has been studied extensively since by various authors. (Sec table 1 of [6])

The R vs. V curve is shown in Fig 2. The value of R, depends on the velocity

boundary conditions (see Table 1)

The case of fixed flux was first studied by Jeffreys [7] and subsequently by Sparrow,

Goldstein and Jonsson [8] and Hurle, Jakeman and Pike [11. The striking feature is

the critical horizontal wave number at the onset of convection, kc=O. The values of

R, in the various cases are shown in Table 2

5 COMPRESSIBLE MEDIUM

If the medium is compressible the Boussinesq equations (2-8) to (2-10) are not

strictly valid.However, Spiegel and Veronis have shown [3] for an ideal gas if

(a) the depth of the fluid layer is much less than any of the scale heights of the

variables in the problem and

(b) if the motion inducedfluctuations in the pressure and density do not exceedl in

order of magnitude the total static variations of these quantities

the equations of compressible convection reduce to the Boussinesq equations with

C, replaced by Cp (=specific heat at constant pressure per unit mass) and Ts' ( ) in
equation (3-7) replaced by c1 ) *- ]C (dimensional units). When [s'=-,

(Coconstant) we get after rescaling E), equations (4-4) and (4-5) with the minor modi-

fications -

a = v/o where K0 = k/poCp (C, in place of C,,)

and

. 14

I
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Decause of this result we can immediately take over any results found for liquids to

the compressible case.Note however, the Rayleigh number defined in this generalized

sense can be either positive or negative.For an isentropic atmosphere it can be shown

that the temperature gradient is g/Cp. Therefore when the imposed temperature

gradient P > g/Cp or R > 0 we say that the static state is superadiabatic and when

R < 0 we say it is subadiabatic.

6 STEADY SOLUTIONS

Let us look for steady state solutions of equation (3-2) with fixed fluxes at both

boundaries-

Tt -)- I =.'

d-T-

Assume C(T)=1 and S(T)=l+s2 T where s2 is a positive number.Then,

IT7 - ..... (-3)

Integrating both sides with respect to z from z=0 to z=1 and using equations

(6-1) and (6-2) we get the constraint

+!

-f ~ = 0 (
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which simply means nett heat leaving the system = heat produced by the internal

sources.

The exact solution of equations (6-1) to (6-3) is

s-- + ( 0 -

where

0I

In the limit X 0 (weak source or arbitrary source with weak temperature de-

pendence.)

Then

To avoid complications due to nonconstant coefficients, in our future work wc will

I
I
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assume #I - #o so that

In nondimensional units

7 ASYMPTOTIC EXPANSIONS FOR CRITICAL R

As in section 6 we take C(T)=I, S(T)-"+s 2 T and T,(z)= -1 in equations (3-10)

and (3-11). Also assume

+w

and 4

Then

..... g -,w

I .~-... -

w+
IL
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As long as R> O the principle of exchange of stabilities holds, that is, Iin(p)=O.

(For proof see Appendix A)

Let us look for the marginal states p=O. Putting p=O in equations (7-1) and (7-2)

Equations (7-3) and (7-4) together with the boundary conditionsfor fixed k de-

fine an eigenvalue problem for R.The smallest of the eigenvalues give the marg;inal

R.We may expect on physical grounds that W and 0 are finite at k=O.The result

we are going to derive now is valid even when T(z) and E'(T) are not constant.

Let us therefore generalize equations (7-3) and (7-4) to

(~-kS w2 W . A2& -.... ?s

(a- 1)& + W () - --

Theorem: If WV is finite at k=O and the boundary conditions are those of fixed

flux then R must be singular at k=O except for special choices of g (discussed later).

Proof. Combining equations (7-5) and (7-6),

W+ W

.... I

I
I
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Let us assume if possible R-- Ro (as k-.O) and W=k'"O where 0 --+ 00. Here

m>O and R,40 are finite.Then taking the limit k-O in equation (7-7)

Let G=D4'o.Then from equation (7-5) the condition of fixed flux at the bound-

aries is

0 00

and going to the limit k-O

5

Equations (7-8) and (7-9) may be written as

+0

II-
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We assume g(z) is sufficiently well behaved so that the conditions of existence

and uniqueness of solutions of equations of type (7-10) are satisfied.

Let G=G be the solution of equation (7-10) for

( 0 i- - - - - - - -( -1 .

"hG to) - 0 (7-.)

If G 2 is any other solution which satisfies DG 2(0)=0 then C2 =CG1 for some con-

stant C.Indeed, assume that this is not true. Let G3 =G 2/G 2(0). (G 2(0)j0 sinde

that would imply G2 = CG, with C=0). Then G3 (0)=I and DG 3(0)=0.The unique-

ness theorem then gives G 3 =_ G or G2(z)=G 2(0)G=(constant)G contradicting

our hypothesis.

Therefore all solutions of (7-10) satisfying DG(0)=0 are given by G(z)=CGI(z)

for some constant C. (See Fig 4). For nontrivial solutions for G (which is essential

for nontrivial W) C40.Then the second b. c. of (7-11) gives

D 1 () =_u -c- - -.ion

Equation (7-13) is in general not true for arbitrary functions g. Using (7-10),

(7-13) can be put in the form

! (=) G j ) c% ... --. (7-14.

(Q.E.D.)

If g-0 equation (7-14) is satisfied which explains the finite critical Rayleigh num-

ber in the fixed flux case at k=0 (without heat sources) discussed in section 6.If

g(z)=w2 (where w = fs) as in the present case Gz(z)=coswz =#
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Therefore

if and only if w=nr (n=O, 1, 2,...)

Therefore when there are heat sources R(marginal) at k=O can be finite only for

discrete values of the Ed number.

This is true for a more general g. There exists only discrete values of the heating

parameter(s) for which R(marginal) at k=O is allowed to be finite. In the generic

case R is singular at k=O.

At this stage we could stop and turn over the solution of the eigenvalue problem

(7-3), (7-4) to the computer. However we will pursue the analytical investigation for
a while and see what else we can learn about the general behaviour of the solution.

The distinguished limit: When w=O, k,=O. But when w=O from the above discussion
we may expect that the R vs. 2 curve has a corner (See Fig 5) which gradually

gets smoothed as w is increased. R as a function of k and w may be expected

to look something like Fig 6. Clearly there is a discontinuity at the origin. If we

approach the origin along some curve in the k2-w plane, R reaches some limit which

in general depends on the path chosen. If we study these limits we may glean some

information regarding the behaviour of R near the origin. This procedure is called

"the distinguished limit".

Let the parametric representation of the curve be

I k " ... .... .. (7 i

K 2 EI
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We furthcr expand R,O and W in the small parameter E2

+I- £( + + (q-')

4- + 4-

~I

Substituting (7-15) to (7-19) in (7-3) and (7-4) and equating coefficients of like
powers of e we have

for the lowest order. Equation (7-20) together with the b. c. D0 0 =0 at z=0,1 ,

Eo=1. (Linear theory does not determine the absolute amplitudes so we are free to

choose the normalizations.) Substituting this in (7-21)

O( . (K-22)
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where P(z) satisfies

and the constants of integration are determined from the velocity boundary con-

ditions. P(z) is evidently a fourth order polynomial. We will not write down the

explicit form for P(z) in various cases but will refer the reader to [9] or [2].

To next order equation (7-4) gives

I - 1 - 'K°  ° & 0 + -4)

Substituting the values for 00 and Wo,

0 Q - -(-25

Integrating equation (7-25) from z=0 to 1 and using the b. c. DE), =0 at z=0 and

1 we have the following consistency condition

or

( 0 Ot t~
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(Note: j () A f-0 ) By suitably choosing qo I 1< we see from (7-
26) we can reach negative values of Ro, even - . This suggests our guess as

to the behaviour of R vs. k2 at small k and w shown in Fig 5 is quite incorrect.

Instead the curves should look more like Fig 7.This is such a remarkable result we
will verify it by an independent method.But first we need a variational principle.

8 VARIATIONAL METHOD

Let us generalize the E boundary conditions to
- - 0 , =? -o. .. 0"

where y is a parameter.By varying -y from 0 to 7r/2 one can see the entire spec-

trum of b. c. from the fixed flux to the fixed temperature extremes. Also,

(2-3

Multiplying (7-3) by W and (7-4) by E and integrating from z=O to 1

00 s: .J0
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Eliminating W from (8-4) and (8-5)

(The boundary terms drop out by virtue of (8-3))

Putting all that back in (8-6) we have

-- ~ S[D + -jD? E&)+

In equation (8-7) 0 and W are eigenfunctions of the eigenvalue problem for

R.Define a functional

A lo' Ik2-D&f Id? L

S' [ (~w j -4--i i. 4-]

where the only restriction on W and 0 is that they satisfy the b. c. (8-1) to (8-3)

and they are 'well behaved' functions.

It is proved in Appendix B if W and E are eigenfunctions of the problem then

-A -(/-9)
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Note however in the case wtO (8-9) does not in general represent a global maxi-

mum or minimum. To see this let us restrict ourselves to the fixed flux b. c. If we

take E) in the form of a sine wave then as A -- 0 1 S () 'S )V DO wvhile

remains bounded (See Fig 8). Therefore A has no upper bound. Now

take O=C. Then fork<w, - as C 'Do so

that A has no lower bound.

We can still use this variational principle however since (8-9) says if we guess an

eigenfunction which is close to the correct one our error in A will only be in the

second or higher orders.

For the rest of this section we use the free b. c. Let us take as our trial functioh

the exact solution for the fixed temperature problem with no heat sources.

W% - (Aic

(See [4]) Substitute this in (6-4)

and solve (8-11) to get the trial function for O.

For w > k we have

0 A AC-so + + T'1
2. 'I 04

where TO 2.

For w < k we have

A I +_

A e e
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where 3cI~. .

Here A and B are determined by the b. c. (8-1) and (8-2). If we substitute these

trial functions in (8-8) and evaluate the necessary integrals, we have

Solution 1: (k > w)

where

Solution 2: (k w)

+ 2 1T 1+ i-ces.

R ~-- Or'-iY1~c)

+ ,~ck ,7
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where

LIMITING FORMS:

Case(i)

If we set w=O and -y=ir/2 (See (8-2)) solution 1 gives the following limiting fv, rns

for k- 0 and W .

_~ ~3k ( k .0- .

Chandrasekhar gives the following exact solution for the case of fixed temperature

at both boundaries and free b. c. for the velocity [4].

_ _ _ -....... (i-i")

Therefore__k 0) - -"

zT'
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Therefore we see the effect of keeping the flux fixed at the lower boundary instead

of the temperature introduces a factor 3 on the right hand side of (8-17).Otherwise

the two solutions have the same general behaviour. (Note:Our solution differs flom

Chandrasekhar's because we have kept the fixed flux b. c. at the lower boundary.)

Case(ii) If we set w=O and y=O (fixed flux case with no heating) solution 1 gives

in the limit k--*0,

- I - 120"1

We see the variational method not only captures the unique featurt af the Rayleigh

number becoming finite at k=0 in the fixed flux case (see section 4) but gives an

excellent approximation for :- It 9 . The exact value is 120.

Case(ili) For the general b. c. (8-2) we have using solution 2

-r% T141 X- 00
+ V

Therefore

4-
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If we put k=w directly in (8-11) and proceed with the analysis, we get the same

answer.Also note (8-20) gives R=0 for the fixed flux case.

Using all this information we put together Fig 9. If we consider only small w then

there is no qualitative change in the R vs. V curve for the fixed temperature case.

As we shift the b. c. towards the fixed flux case, there is some value

at which constant(w) in (-19) becomes 0 and R is finite at k=0. Below -t

(-<y), 9 -) - 00 as k-*0. When w=0, -=O. For small but finite w, Yc > 0.

It should also be noted that for R < 0 the principle of exchange of stabilities

proved in Appendix A is no longer valid, as a result overstability is possible. '1 hat

is, if R is above the marginality curve in Fig 7, the system is definitely unstable.

However if R is below the marginality curve and R is negative then the system 711ay

still go unstable through growing oscillations or overstability.

This phenomenon of the marginal Rayleigh number going to minus infinity can

be very roughly understood as follows.When there are no heat sources, the stability

criterion can be urnuerstood from the following picture. Imagine a fluid element

at the bottom is given a small upward velocity. The time scale of its motion is

t- d/v. If the conductivity is large enough so it can get rid of its extra heat aid
come into thermal equilibrium with the surrounding cooler fluid within this time

then the system is stable otherwise it is unstable [10]. When the fluid has intcrnal

heat sources however, a different kind of instability can occur. This depends on the

answer to the following question: is the heat produced per unit time by the sources

in a given parcel greater or less than that conducted away per unit time? If it is

greater the parcel will keep getting hotter and start rising irrespective of what the

viscous time scale is. I think we are seeing two distinct mechanisms in Fig 9. When

the b. c. are close to the fixed temperature case conductive losses are relatively

high and the onset of instability is controlled by viscosity just as in the case with

no heat sources. As we approach the fixed flux case the isotherms diffuse into the

I
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constant(w) can be positive, negative or zero depending on w and y. In the fixed

flux case (-=0)

I+Ci
- as tj

In the case where the upper boundary is fixed tev(ower boundary is always at
fixed -k4. ) we have (y=,r/ 2)

+ TI____Cos t-

The right hand expression is positive for w < r/2.
Note in the general case solutions 1 and 2 match at k=w and the common value is

I - __ ...+I C. +<o' ( g ) ( T°
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boundaries lowering the temperature gradients and therefore conductive losses till

a "pinch off" is reached and the second kind of instability takes over. This kind

of instability is insensitive to viscosity therefore it sends the marginality curve to

minus infinity. To isolate this second kind of instability "in pure form", in the iiext

section we do the linear theory in the absence of viscosity.

9 CONVECTIVE GROWTH RATES WITH NO VISCOSITY

We write (3-6) to (3-8) setting

dTS - -

_ ~+ Kov~+E~" 9 2

We adopt the scaling /

LAI C4

otI
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and take the z-component of the curl of curl of (9-1)

where

A2-

We look for solutions of (9-3) and (9-4) in the form

+/
-c%

I (9 -0
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Then

1?~~ 
(542 )W ~ - 6-q

with the b. c.

I

(Note: We have less b. c. because (9-5) is of second order instead of fourth order.)

It can readily be proved (the method is shown in Appendix A ) that for aR > 0, p

in the eigenvalue problem (9-5) to (9-8) is real. Eliminating e between (9-5) and

(9-6)

+. (9-)

We look for solutions of (9-9) in the form ki ',,. e . Then,

.... (i-c)

I
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which has the four roots p=+m,-m,+n,-n where,

I,

(If the quantity under the squareroot sign is negative we understand the solution

with the positive imaginary part)

Since the system (9-5) to (9-8) have parity (z---z) invariance there exists a basis

consisting of even and odd solutions. Therefore the solutions of (9-5) and (9-6) Lre

(oo) inA 44 (rm ) t u+4first .t(not.)

(~ ) i~. A 4s, (i) 4) c~4 (

(Note: in this section z goes from -i to +1) Let us first take the even solution.
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(9-7) can be written as

Substituting (9-11-b) in (9-8) and (9-12) we have

A t.,>k m, + \e. -o .. .. uE-)

4YY % (&r4 n + zwYN YL 0

which gives the solvability condition

-- - - , Y s)

with m and n expressed in terms of p, (9-15) determines the permissible values

of p.

With the odd solution we get

-Y U.,.-YV\4IS \- Y.Y\ ' V'/ > j
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Limiting form (even):

Let us put w=O and look for solutions in the form

where f is a small parameter. Substituting in the expressions for m and n and

keeping only lowest order terms in e we have

RIC

1/

Let us assume R/po to be positive. Substituting k=k0 e and (9-18), (9-19) in (9-

15) and retaining only lowest order terms

M -hN 0
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which has solutions

{ N -rt - - - (9-2 )

(9-21) is incompatible with b. c. and the solutions of the trancedental equation

(9-22) are m=mt, (1=1,2,...) (see Fig 10)

Therefore

The fastest growing mode is

4-

('2# I 4!
~z (-h')
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(if we approximate mi by 3ir/2) So we have a set of unstable solutions for R > 0
and a set of stable modes for R < O.Let us see how these results are changed when
we put back the heat source.

With w finite let us do the expansion as follows

1~~~~-* .. .( z5)

We then have, for po > w2

and for p0 < w 2

In the first case (9-15) gives(I C/2 1

C(q-z))
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In the latter case (9-15) gives(co - o ,)12 d2 .;M- (&. . -/  o .. ,- 1is
'2 2.

Therefore the general solution is

(where 1=0,1,2,...) For w small only one mode is unstable viz.

irrespective of what the Rayleigh number is. The situation is shown in Fig 11.

Limiting form (odd):

If w=0 the only difference with the previous case is in (9-22) which now becomes

I
With the heat sources we do not get solutions for p that remain finite as k-O.Ve

do not investigate this any further.

i
I
I
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10 CALCULATION OF GAMMA (CRITICAL)

We write equations (7-3),(7-4) and b. c. (8-1),(8-2) in the following way

(j2 + 6)2J (10-2)

DI ( o ") = 0 - (1o-3)

We want to find the critical value of a, a = ac for which the Rayleigh number

becomes finite at k=O.

Let k=Ke and let us expand R,a,O,W in asymptotic series in c (w is kept constant)

L + + C4 +

I G:,0o + " , +..

+ 4 _ 4
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Substituting in (10-1) and (10-2) we have to lowest order in e,

2U49o --' o -. .... (io-)

+ 0

Equation (10-6) =o.

LIA 4- Q

Equation 00-3) then gives B=O =>

&0 A CO -Z.. ,0

Equation (10-4) gives to the lowest order

Using (10-7) and (10-8)

Ar, (% + 06~ i ) 0(
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To obtain nontrivial solutions for e 0 we must have

D(A- C o Q6

Let us go back to the variational calculation of R in section 8. Equation (8-19)

gives

where

Therefore -, corresponds to
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0 :

0 , -- O

o,-L0 _ . -. - t

This is the same as (10-10) if one remembers, by definition & =tany.

Let us continue further to calculate Ro.Substituting O0=cosz (we normalize to
A=I) in (10-5),

4I

Therefore

VJ 0  A +R +r

Wd (o( 0 0) o



353

The other three b. c. determines A,B and C. Note A,B and C depend only on w

Equations (10-1) and (10-2) give to the next order 0"

,- 2 + -'- (,5

Using (10-7) and (10-13) in (10-15)

- (6-)

where

4-C1
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Let EOl= 2f(z) be a particular solution of 00-16) where f depends oni R and w but

not .Then the general solution of (10-16) is

k' F ( icoCn&v)e

The b. c. (10-3) and (10-4) give

0!

+ 4

Equations (10-18) and (10-19) :

Equation (10-18),(10-7) and (10-20) gives

4- t( Oo j~(1) + ~~()+ 0(1 COW&
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Using (10-10) and (10-21)

-~ ~ K'o ~ - + o~(~ () + C/1 to

This is a relation between Ro,w,al and K. (Note: f contains w and Ro as pa-

rameters.) We know Ro depends only on w and is independent of a, and r. If we

set a1=0 in the above equation, both a, and K drop out and we are left with an

equation for determining Ro.

Q~ ~ 4 4AvC. .~' (o)(01.

f(z) is a solution of a forced oscillation problem with an anharmonic driving force.

It can be expressed as a Fourier series with w as the fundamental frequency.

11 CONCLUSION

We have found, the presence of heat sources in the medium can give rise to an

instability that may bring into question the validity of using the Schwarzschild's

criterion as a test of convective stability. The model studied here is certainly over-

simplified. In real stars the internal heat sources depend on temperature according

to power laws with very large exponents. Also since we are finding instabilities with

very large horizontal scale the infinite plane parallel model is no longer a valid one

- we will have to take into account the spherical shape of the star in any serious

model of the phenomenon. This work is nothing more than a preliminary investi-

gation whose main conclusion is that the more realistic version of this problem is
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worth investigating.
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A Two-Layer Wind-Driven Ocean With Recirculation

Richard A. Jarvis

In a two-layer, rectangular ocean model where the lower layer does not become exposed

through outcropping, the lower layer is usually assumed to be motionless. Young & Rhines

(1982) showed that conservation of potential vorticity can lead to regions being cut off from

control by eastern boundary conditions and therefore able to allow motion in the lower layer.

The quasi-geostrophic model of Young & Rhines (1982) is extended to the shallow-water

case, thereby allowing for the possibility of surfacing of the lower layer, with tile westerii

boundary considered fundamental in the determination of flow in the interior, as shown

by Ierley & Young (1983). We formulate the problem for the interior and the western

boundary in terms of the two layer depths and, by treating the solution as a perturbation

to the 1 !-layer solution, we reduce the problem to a set of quadratures of known functions

and arbitrary functions of latitude y, which can be solved much more simply than the full

partial differential equations.

1. Introduction

The separation of the Gulf Stream has long been of interest to oceanographers, with two

different theoretical approaches being taken. The first school of thought treats the sepa-

ration mechanism as being essentially barotropic, but this is not tile approach taken here;

we are taking the view of Parsons (1969), and later Veronis (1973), that separation is as-

sociated with the surfacing of the thermocline, with cold deep water outcropping to the

north-west and thereby diverting the Gulf Stream. This is consistent with the observalion

of cold water north of tile warm, separated Gulf Stream.

The simplest model that one can employ to investigate this mechanism is two-layer, and

the Parsons-Veronis model treats the lower layer as being quiescent, even when exposed.

This is partially based on the idea that the lower layer is not directly driven by wind

stresses prior to outcropping. Kamenkovich & Reznick (1972) studied the effects of wind

driving upon the lower layer once outcropping has occurred, finding the original Parsons-

Veronis model to be robust to the inclusion of direct wind forcing. Rhines & Young (1982)

suggested a mechanism whereby motion in the lower layer can occur in the absence of

direct wind forcing and developed a quasi-geostrophic model to describe it. The dynamical

balance proposed was between the interfacial driving of the lower layer by the upper layer

motion and some dissipation mechanism in the lower layer, such as bottom friction. This

can occur only in regions 'cut off' from the influence of the eastern boundary. Any fluid
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column that may be moved to the eastern boundary in such a manner as to conserve its

potential vorticity must have originated from a region of no flow. Young & Rhines (1982),

and later lerley & Young (1983), extended the quasi-geostrophic model to wind forcings
for which a western boundary layer exists. It is our intention to extend tlte Rhines-Yoing

model to a situation in which outcropping may occur by using the shallow-water equations.

The ultimate aim is to apply the model presented here to the case of a separated boundary

layer.
In the following note, we shall begin in §2 by formulating the equations which govern

the system. The ocean is modelled as rectangular and two-layered, with an anticyclonk

cosine zonal wind stress. There is an interfacial drag between the layers and ultimately

the dissipation mechanism is bottom friction. In §3, we determine the conditions under

which a region of the lower layer may become isolated from the eastern boundary conditions

and in §4 discuss the nature of any possible lower layer recirculation within that cut off

region. Taking the main result of lerley & Young (1983) as a guide, namely that the
western boundary layer is instrumental in determining the lower layer flow, we develop

western boundary layer equations in terms of the two layer depths in §5. These equations

are nonlinear, partial differential equations which in general require a numerical solufion.

In §6, we describe how by perturbing the solution about the 1 -layer model of Paisons

(1969), we can linearise the system and solve for the perturbation layer depths in terms of

known integrals and arbitrary functions of latitude y.

2. Shallow-water equations

The work presented here is based on a two-layer, shallow-water model. We are considering

a steady ocean, driven by an anticyclonic zonal wind stress

r' = -Wcos ( ) , (2.1)

with dissipation through interfacial and bottom friction. L is the latitudinal extent of the

basin and so curl r = 0 at the northern and southern boundaries of the basin. Ekman layers

at the surface, at the interface between the layers, and at the bottom are incorporated into

one or other of the upper and lower layers, as suitable; since the properties of each layer

are independent of depth, we integrate over the layer depths to obtain the depth-averaged

shallow-water equations

-fvl = -gh -+ r X  P2 R (ul - u2 ) (2.2a)h, p, h,
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ful = -ghy- p R (VI - v2 ) (2.2b)

-fv 2 = -g 1 hr - -L-(u 2 --) -(2u 2  (2.3a)
P2 P2

f U2 = -9L' hy - gAh2Y V2 - KV2 .- (2.3b)
P2 P2 T22

v1 = (ul, v1) and V2 = (U2, v2 ) are the velocities of the upper layer, which has depth hl,

and the lower layer, which has depth h2, respectively. The total depth h is given by

h = h, + h 2 . (2.4)

Interfacial and bottom friction are linearly related to the velocity difference and the lower

layer velocity, with coefficients R and K respectively (RIf h, K/f h < 1). The upper liyer

has density p, and the lower layer density P2, the difference being Ap = P2 - Pi > 0. The
Coriolis parameter is f = fo + 3y, where 0 is a constant and y the meridional distance

north from the southern boundary of the basin. Typically a basin corresponding to the

North Atlantic subtropical gyre extends from 150 N to 450 S, and so the north-south exiont

L of the basin is about 3200 km. The east-west extent is taken to be 5000 kin.

In conjunction with the shallow-water equations, we have incompressibility

V.(hlvl) = 0 (2.5a)

V.(h 2 v 2 ) = 0, (2.5b)

and application of this in the lower layer, combined with (2.3a,b), gives us

(h2v2V = -R. (curl (-2) - curl - Kl .curl (_) . (2.6)

The frictional terms are very small in the interior of the basin, dissipation becoming im-

portant only in reg ons of strong flow, such as the western boundary layer, and so, defining

a lower layer potential vorticity

q2 -f (2.7)

with relative vorticity being neglected, we obtain for the interior

h2 v 2 .Vq2 = 0. (2.8)



370

If we further define a lower layer transport streamfunction V2 by h2 v 2 = curl k02, we can

rewrite (2.8) as

J( 2 , q2) = 0, (2.9)

which implies that 0 2 and q2 are functionally related in the interior. This is an important

consideration when discussing the existence and character of recirculation in the lower layer,
as we shall see in §3.

In passing, it is worth noting that the usual Sverdrup balance applies in the interior
for this shallow water system. Taking the divergence of (2.2a) minus (2.2b), we obtain

3 (hivi + -h~v 2  = k.curl r- -Ak.curlv 2 , (2.10)\ P1 / P1

which in the interior reduces to

/3V = k.curl r, (2.11)

where V = hv, + -hov 2 is the total north-south transport.

We shall now consider the implications of the functional relationship for the 14-layer

model as described by Parsons (1969), and how we can allow the possibility of lower layer
motion (without requiring the lower layer to surface and therefore be directly driven by the

wind stress, as studied by Kamenkovich & Reznick 1972).

•I (At,/ ,

Figure 1. A vertical section showing the two-layer structure of the model.
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I .X9

Figure 2. The Sverdrup transport induced by the anticyclonic zonal wind stress X= -W cos(7ry/L).

Figure 3. A vertical section of the reduced gravity solution of Parsons (1969) for Q < 0, showing
the large layer depth gradients close to the western boundary.
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3. The unblocked region

Parsons (1969), in his simple, yet effective, model of the separation of tile Gulf Stream,

treated a two-layer ocean with the lower layer motionless. This can be justified. as follows:
since the streamfunction 0 2 and the potential vorticity q2 are functionally related, contours

of q2 are contours of 02. However, on the eastern boundary, L2 = () and so if a particular

contour of q2 meets the eastern boundary, k2 = 0 all along that contour. The contours of
constant q2 can be viewed as characteristics, propagating the information that there is no
lower layer flow from the eastern boundary. This is known as 'blocking'. The possibility

exists, however, that there is a region of the basin isolated from the eastern boundary iii
the sense that it is inaccessible to characteristics originating at the eastern boundary. This

isolated region is therefore 'unblocked'. Within the unblocked region, the possibility of lower
layer flow exists, which is physically related to transients providing a continual mechanism
for the transfer of horizontal momentum from the wind-stress driving to the lower layer
through the propagation of Rossby waves. This can be modelled as a steady state in which
interfacial frictional driving of the lower layer by the upper layer is balanced by dissipation

through bottom drag, as suggested by Young & Rhines (1982) in their development of the
equivalent quasi-geostrophic model.

To determine the existence and extent of the unblocked region, let us first consider
there to be no motion in the lower layer implying that, in the interior, the reduced gravity
model applies. The upper layer depth h1 is given by

=h --- r+ lk.curlr (XE-x, (3.1)1 1 -Apg

where hiE is the upper layer depth at the eastern boundary. h1E is independent of y to

satisfy the condition of no normal flux at the eastern boundary. Let us define the function

Q to be

Q(y) = r' + -k.curl r, (3.2)

which is proportional to f.curl (r/f) and is negative except for a small region in the north of
the basin. If we further define y" to be the latitude at which Q(y) = 0 then, for y < y*, (3.1)
implies a shallowing of the lower layer away from the eastern boundary, as the hydrostatic

pressure balance in the lower layer relates the two layer depths through

h2 - h2E = - P (hi - hiE)- (3.3)P2
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Since q2 = f/h 2, a column of fluid displaced westwards must also be displaced south-
wards if it is to conserve its potential vorticity as h2 decreases. This implies that the

characteristics, or contours of q2, must run from the south-west to the north-east of the
basin. Similarly, for y > y(, a column of fluid displaced westward must also be displaced
northwards. This suggests a region on the western side of the basin, around the Q = 0

line, which is not accessible to characteristics originating from the eastern boundary. This
is the region in which lower layer motion will occur and it is bounded by the characteristic
corresponding to the potential vorticity q2 = f*/h2E, where f" is the planetary vorticity

at y = y" and h2E the upper layer depth at the eastern boundary. If two possible values of
y" exist, the correct choice is the one at which Q'(y*) > 0.

Figure 5 shows the position and extent of the unblocked region for differing values of
hlE, h2E and VV, the wind strength. In both cases, the density difference Ap between the
layers is 10-3 g cm- 3 and the calculations are for the basin described in §2. Figure 5(b)
suggests that there is a minimum value W = 'Vcrit of the wind stress amplitude for which
recirculation can occur. This is straightforward to determine: if we combine (3.1) and
(3.3), we obtain an expression for the characteristic corresponding to potential vorticity

q; = f/]h2E,

.Ap h2 E (1 f p (1.

Taking the limit y -. y, the unblocked region penetrates eastward to

X(y*; q2) = XE - g-- (3.5)P, f *Q'(y*)

and so, for X(y*,q2) > xw, the longitude of the western boundary, and for our choice of
wind stress (2.1), we require the amplitude IV of the wind stress to be

Ap 132 L 2 hlEh2E
W > Wcrit = -g - w2 Lr2h/L" (3.6)

Note that the unblocked region never reaches the eastern boundary x = XE. Surfacing,
where the upper layer depth vanishes and the lower layer outcrops, first occurs at the

north-west corner of the basin for a wind stress W.V ,. obtained from (3.1), vi:.

w.u, = 9p h E (3.7)
P2 2(XE - XIV)
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Figure 4. Schematic showing the possibility of the existence of a region isolated from the inflirence of
the eastern boundary. For Q < 0, characteristics are directed south-west from the eastern boundary,
while for Q > 0 they are directed north-west.

CH5RCTERISTICUCCc.Sx:

3400 m, IV = 5 x 10' kg m-1 
8-2, and (b) h4 1E 400 m, h2E = 3600 m, WV = 1.3 x 10-4 kg m- s-2.

Note that the unblocked region is very small in the second case.



375

and so, for recirculation to occur before surfacing, and therefore affect surfacing, it is

necessary that Wcrit < IVI'r, which implies that we require

h2E <  2 2
hlE 2 \3L/

For the basin considered here, this is approximately equal to 11.4 and so we are justified
in pursuing the study of recirculation in the lower layer of a two-layer ocean prior to

outcropping. If the critical ratio (3.8) had been of the order of I rather that 10, we would
have had to study the surfacing problem first. In a sense, however, this is immaterial as we

intend including surfacing in our model at a later stage, although we are now in a position
to consider the effects of lower layer recirculation upon the surfacing condition.

4. Recirculation in the lower layer

Once the possibility of flow in the lower layer exists, we are no longer able to use the reduced

gravity model solution, although as we shall see in §6 it is still valuable as a zeroth order

approximation. The reduced gravity solution gives us the position of the unblocked region,

but is inapplicable to further analysis of lower layer flow. Returning therefore to the full

shallow water equations (2.2), (2.3) and the Sverdrup relation (2.11), we obtain a relI ion

between the layer depths in the interior, i.e. neglecting dissipative terms,

h2 + Ph2 - - XE) + h2 +. (4.1)
P1 9 E P1 E

Doing the same for the upper layer alone,

L J(hl,h) + gh h. = Q (1.2)

and so, eliminating derivatives of h, between the two and recalling that q2 = f/h 2, we

arrive at the nonlinear characteristic equation for q2

Lg - P-hlh 2 + Q(XE - x) q2. + Q q2 = 0. (4.3)

This is similar to the expression obtained by Veronis (1988) for the sum of the upper

two layer depths in his three-layer model of ocean circulation driven by winds and surface

cooling.
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In the western boundary layer, the interfacial stresses will be large and so we expect
the lower layer flow to be northward in the western boundary layer, implying southward

flow in the interior. Since Q < 0, this is consistent with our choice of sign for (4.3), since

information will be advected along characteristics with the flow. The two terms multiplying

q2z correspond respectively to the westward propagation of information by a nondispersive

Rossby wave and the eastward motion induced by the wind, as we are considering the wind
stress to be such that the unbloc!:ed region is confined to the northern half basin.

In general, the characteristic equation (4.3) can be solvect, in conjunction with (4.1). so

long as q2 is known at some point on each characteristic. Unfortunately, the only externially

imposed boundary conditions are the layer depths at the eastern boundary from which the

unblocked region is, by definition, cut off. Young & Rhines (1982) attacked the probleiii by

utilising the functional relationship (2.9) between lower layer streamfunction and poteiltial

vorticity and imposing a first order balance between interfacial forcing and bottom friction

in the lower layer. They integrated around an unknown closed streamline of the lower Liyer

flow to determine an integral balance. In their quasi-geostrophic case, it is in fact possible to

determine the functional relationship between 0k2 and 42, a modified (and known) poteintial

vorticity, thereby solving the problem completely without needing to know the particular

deltails of the flow. We can construct a similar integral equation for the shallow "ater
model, but are unable to solve for the functional relationship in the same manner. This is

of no account, however, as the argument of Young & Rhines (1982) applies only away from

regions, such as western boundary layers, where dissipation becomes a zero-order effr-t.

Ierley & Young (1983) clarified this point, analysing the western boundary layer dy-

namics correctly. They showed that the western boundary layer is instrumental (fut their

quasi-geostrophic model) in determining the nature of the interior flow in the unblocked

lower layer region. There is no reason to suppose that the shallow-water model will be aiv

different in this fundaniental qualitative respect. WNe shall therefore direct our attentioi to

the western boundary layer. To solve for the interior flow, it will be necessary to delr-

mine the outflow conditions from the western boundary layer, which itself will be solved

by matching to the interior solution. This suggests an iterative approach to the problin

in which the interior and western boundary layer solutions are each determined assumiig

knowledge of the other.
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Figure 6. Schematic of the lower layer flow expected as a result of the existence of an unblocked
region.
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5. Western boundary layer dynamics

As in Ierley & Young (1983) for the quasi-geostrophic case, we expect the western boundary

layer to play a fundamental role in determining the solution in the unblocked region. In
the western boundary layer, the north-south velocities are sufficiently large for interfacial
and bottom drag to become important and also correspond to high east-west gradients in

the layer depths. The wind-stress effects and east-west velocities are much weaker, and can
be neglected in the zonal momentum equations, and so the shallow water equations (2.2)

(2.3) reduce to

-fyv = -gh. (5.1a)

f ul =-ghy - L2 (VI - V2) (5. 1b)

-fv 2 = -gP-hr - g-h 2. (5.2a)
P2 P21

fU 2 = - h - (v2VI) - (5.2b)
P2 P2 h

In the lower layer, V.(h 2v 2) = 0 and so

fv 2 .Vh 2 +/3v 2 = -R 2 L K (L2), (5.3)

Substituting for vi, v 2 we obtain, after some manipulation,

-f J(h1 , h) + O3h 2 h,+ Aph2 .) RAL-hi.. - K (h.,. + Lh 2rr) (5.4)

which suggests the rescaling z - -, where H is a characteristic upper layer depth, e.g.

hlE.

A second equation can be derived from the full Sverdrup balance (2.10), again neglect-

ing the wind-stress term and variations in u. The balance in the western boundary layer

is

6hv +P2 h 2  = -K L2 v2, (5.5)
Pi Pi

which upon substitution for vj, V2 gives us

13hh + Aiph 2h2.) -K h~ + L!h 2xx) (5.6)



379

suggesting the same boundary layer scaling. Therefore let us rescale the layer depths hl,
h2 by H and stretch the x-coordinate through x = -_!. As K < )3H, we can consider
the boundary layer to range from = 0 to = oc and the edge of the western boundary
layer to be at x = xw. Simplifying (5.4) by combination with (5.6), we eventually derive
the western boundary layer equations in relatively simple form, viz.

hjhC + fJ(hl,h) = (5.7a)
Pi

hhC + L h2 2 = -ic (h ± 42 (5.7b)

wheref = f//3 and a = R/K. This reduction, which is similar to the approach of Welander
(1966), who considered only the blocked case, simplifies the model greatly. Suitable boud-
ary conditions can be derived from mass transport considerations. There is no normal flow
in the upper layer at the western wall, i.e. ul = 0 at = 0 and so, from the simplified
shallow water equations (5.1), (5.2) we have

fhih -aC 1 (."..8)
_' o P1 L=O

and p1h1 u1 + p2 h 2u2 = 0 at = 0 implies that

jhht + hh 2 ) = - (h + h2t) Ko (5.9)

As o -* c, we must match hl, h2 to their values in the interior of the basin. If we
are to solve this system in an iterative manner, posing successive interior values for hI, h2

and then solving for the western boundary to obtain new values for the layer depths, it is
better to match to only one, or a linear combination, of the layer depths and derive a new
matching condition based on the north-south mass transport. Southwards transport in the
interior must be returned in the western boundary layer, i.e. for the upper layer,

J hvldx = 0, (5.10)

which becomes
(00 IZ

hh d -+ h1h.dx = -(XE - xw). (5.11)0 W g
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The western boundary layer equations contain derivatives in both and y, requiring us
to set boundary conditions at the northern and southern walls. Simply applying v, = V2 = 0

at the southern wall gives us hg = h2( = 0 at y = ys, which can be satisfied only if there

is no net southwards geostrophic transport in the interior, i.e. only if curl r = 0 at y = ys.

Welander (1966) managed to apply v, = v2 = 0 at a northern curl r = 0 boundary also,

by considering the linearised case of zero Jacobian J(hi, h) between the layer depths, but

matching at a given northern boundary is not guaranteed by the boundary layer equations

(5.7) as they contain only a single y-derivative. In general a two-dimensional nonlinwar

system such as described here requires a fully numerical solution, or an Ansatz, as employed
by Ierley & Young (1983) for the quasi-geostrophic case. We can avoid much of this by

considering the effects of the postulated flow in the unblocked region of the lower layer

upon the dynamics of the system to be small, allowing us to perturb about the reduced

gravity solution (Parsons, 1969), which arises when no lower layer flow is allowed. This is

likely to be so when the lower layer is relatively deep and so we shall formally expand to

first order in h1 /h 2 , the ratio of the layer depths. However, it should be noted that for a

two-layer ocean of finite depth, with driving at the surface and dissipation by interfacial and

bottom friction, some flow must occur in the lower layer to effect the dissipation mechanism

(\Velander 1966). It can easily be shown with a linear quasi-geostrophic model that this

flow is restricted to a thin region of thickness h1 /h 2 times the thickness of the wesLCrn

boundary layer itself, in the absence of any interior lower layer flow.

6. Deepish lower layer approximation

To continue further, we shall consider the solution to the nonlinear boundary layer and

interior equations to be not significantly different from the reduced gravity x.odel, for
which there is no flow in an infinitely deep lower layer. As we shall see, this enables us

to decouple the boundary layer equations and reduce the solution to a set of arbittary
functions in y and various integrals of the known reduced gravity approximate solution.

In the ensuing discussion, we shall write superscript 0 for the reduced gravity solution

and superscript ' for the perturbation, i.e.

hi = ho + h' (6.1)

with corresponding expressions for h2 and h = h, + h2 . The reduced gravity solution, as

described by Parsons (1969), is as follows. In the interior, the upper layer depth is given

by
02 p - XE), (6.2)1 mE p gH 2
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which is the same as (3.1), and in the boundary layer by

ho h=h[ 1 - Ae-A ] (6.3)

where

h = h E Q(Y) (6.4a)
-ip gH 2

h~~ ~ 2 W L-r(y). 4bhw= h E -z--p --x(.4)

Ap gH2ZE(.b

A hit - h1w (6.4c)A-hli + hilw

Ah1 p1  (6.4d)
GtP2

hIt is the upper layer depth just outside the western boundary layer and h1w the upper
layer depth at the western wall. All layer depths are now non-dimensional, having been
scaled by a typical depth scale H. Everywhere, ho is related to h' by the simple form

h 0 - h2E =--- -t(hO - hlE). (6.5)P2 ,'1 -

6.1 Western boundary layer

The second boundary layer equation (5.7b) can be regrouped as follows:

hlhc + h2 (ht + -lh2f + hff + P 2(f = 0 (6.6)
PI PI

and since V(h ° + !-h°) = 0, (6.6) is satisfied to zeroth order in ho/h' by the reduced

gravity solution. T9 next order, we have

2= -hoh at =0. (6.7)

Writing

H = h' + Ph, (6.8)
P 

2
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(6.7) becomes
h°lif + tt= -h= h, (6.9)

which can be integrated twice, yielding

- =, Y) -I(C, Y) + Cl(y)I2 ( ,y)+ C2(y) (6.10)

where

h = 'Y ho ho,, e 2 <d' (6.11la)f' r' ..
I 2 (f, Y) -j f' d d2'. (6.1lb)

11 and 12 are known functions, requiring only a quadrature. We do need, however, to
determine the arbitrary functions Ci(y) and C2(y). To zeroth order the boundary condition

(5.9) applied at C = 0 is satisfied by the reduced gravity solution, and to first order in hl/h

it becomes

]h R, + RC= -jh ho at =0 (6.12)

which is an expression in R alone. As o o we can simply match 7- to its value in the

interior and so, noting that - = C2 and 7"li = C1 at = 0, we have

h o 021 d c  + C1 = -fhhoo (6.13a)
(=O dy IYL

-I7' + CII2 + C2 = Rjint- (6.13b)

Superscript ' refers to integrals evaluated in the limit - oo and R'"' is the value of 7- at

the outer edge of the western boundary layer and is zero for the blocked region as reduced

gravity describes the solution exactly there. The relations (6.13a,b) reduce to a first order

ordinary differential equation in y for C2 , which we can close by applying R- = R'" VI

along the southern boundary y = ys, as hI and h2 are both constant for v, = V2= 0. This

corresponds to setting C2(ys) = h i"' and CI(y.) = 0 (note that If = 0 at y = ys).

Having solved for R-, which is a linear combination of the perturbation layer depths,
we return to the first boundary layer equation (5.7a) to obtain an equation for h, the

perturbation upper layer depth. Equation (5.7a) is in fact satisified exactly by the reduced

gravity solution, as are the two remaining boundary conditions (5.8) and (5.11). The

perturbed first boundary layer equation is

hht + hoh' + 1 [J(h',ho) + J(h=,h')] th (6.14)
Pi
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which, after some manipulation, reduces to

a('h'h = -P [fJcwho) - OR](6.15)
hif + (h' ho) = 1-

The importance of being able to decouple the boundary layer equations is now apparent.

We have obtained an equation for h', which allows us to write h' also in terms of arbitrary

functions of y and known integrals, using the completed calculation for Xt. The solution

for h' can now be written

h' = K(, y) + C3(y)A 2 , Y) + C4(y)K 3(, y) (6.16)

where

Pl Ap f" " d," ,4 '

K, py) = oP2P1 e 002J("h
° ) - h°7"1-hR,, d]"d ' (6.17a)

,P. - r hOps .,

KA(,y) = - e- f,' "2 d ' (6.17b)
aP2 (0
p1 -f' h- ...

K 3( , y) = L-e o2 d (6.17c)
aP2

Note that K1 is a function of 7R and is therefore dependent on the values of the arbitrary

functions C1 , C2 . To be useful, K1 should be decomposed so that it is a sum of known

integrals multiplied by C1 , C2 and their derivatives. We shall address this later, but first

let us consider the remaining boundary conditions. Upon perturbation, (5.8) becomes

j (h'ho + hoh') = -!-- (6.18)1I P l I

Employing h' = £I. + Ph' and ho = A-h° this can be written

Api (hoh')y + L' -fJ = - ph4at 0=. (6.19)
P2 P2 P

The final boundary condition (5.11), which matches the northward return flow in the west-

ern boundary layer to the total southward flow in the interior, yields

hj ho + hoh'd = - hh_ + hoh'dx, (6.20)
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which can be simplified by integration by parts and applying a limited matching of pertur-

bation quantities at the edge of the western boundary layer to

APhOh, = - 2 i-h°dx + h°i-td - h°h (6.21)
P1 =0(I6.-21)=oP I Z=o Jfw o0C0

Now,

hoJ<,d '  
2 (6.22)

h~~7f~~~gd~~f j o [fi ~~ hojho,,e <1'hdfldcI

and so define

o ho Ht, d = C1M2 ( , y) - M1 ( , y) (6.23)

where

Integrand(M 1 ) = ho( ') x Integrand(I) (6.24a)

Integrand(M 2) = hi( ') x Integrand(1 2) (6.24b)

We are finally able to write down the boundary conditions in manageable form. viz.
pi Ap - d -dC2 p( P
-2 f -(hwC 4

) + f + C3 - -- h I wC 4  = 0 (6.25a)aP2 p, y dy Pl ( aP2

PI APhjwC 4 _- '-h° dx - hjt" int - Al- + CIA1 = 0 (6.25b)

CP2 PI J hw

leaving us only to determine the integral of Oh°, across the interior. We shall discuss this

in §6.2 below, but for solving the western boundary layer equations consider all interior

quantities to be known. Again imposing v =V2 = 0 at y = ys, where there is blocking,
we obtain the boundary condition C3 = C4  0 at y = ys.

We are therefore able to solve for ?i and h' in the western boundary layer of the

blocked region up to y = yc, the southern boundary of the cut off unblocked region at the
western boundary. Since reduced gravity holds in the interior of the blocked region, the

perturbation quantities ?i and h' are zero there and so the solution is immediately found

for the western boundary layer south of y = yc. The values of CI, C 2, C3 and C 4 found at

y = yc can then be used as boundary conditions for the solution of the unblocked region

yc < y < y*. Having solved for the unblocked western boundary layer, we now have a new

guess for h' at the edge of the western boundary layer. This is given by

h' = Ko + C3 Koo + C4 K'. (6.26)
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This again involves known integrals and can be greatly simplified. These and other siruiJ-
fications will be discussed in the Appendix.

WTe now need to solve for the interior given the western boundary layer outflow as well
as develop a simple expression for the integral of -h'. across the interior of the unblocked

region.

6.2 Interior characteristic equation

Within the interior, the relation (4.1) between the layer depths applies. Upon perturbation

and recasting in terms of R- and h' this becomes

= 1p- h0l' (6.27)

which implies that W < h' and so, ignoring higher order terms, the perturbation layer

depths are related by

h' - Lh' (6.28)2 P21

Hence, if we know h', we immediately have h' and R and are therefore in a position to cal-
culate the integral of Who. The characteristic equation (4.3) becomes, upon perturbal ion

9 + QVJ(XE - X) h' + Qh Q 0 hf (6.29)

which can be rewritten

fig A.0 0Oh
- f P i, h2 + Q(xE - x) (6.30a)

y"= Q (6.30b)

- f p2h?,h2 .  (6.30c)

The characteristic paths are therefore known, being given by (6.30a,b), with (6.30c) imply-
ing that

hi = h'(outflow) exp ( o P 2da'). (6.31)

a is the distance along the characteristic from the western boundary layer outflow.
The interior solution is now found by integrating (6.30a,b) back to the western bound-

ary and hence determining the relevant outflow point for each point in the interior. From
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the western boundary layer calculation, we have h'(outflow) and therefore h' at the origi-

nal interior point from (6.31). R is then determined from (6.27) and (6.28), giving us new

guesbes for Rint and the x-integral of 1-th° . Note that the perturbed characteristic system

is equivalent to mapping the outflow values of h' along the edge of the western boundary

layer onto values of R'-h°l along lines of latitude in the interior. Therefore, if we are to find
the integral of 7"h.2 by some quadrature based on n points, we can write, for y = yj,

I: H -h-dx = h (xw, youL(x 1 )) (6.32)

where xij is the ith quadrature point for y = yj, yOUt is the mapping from the interior to

the edge of the western boundary layer and gij is the product of ho., the exponential part

of (6.31) and constants dependent upon the particular quadrature scheme selected.
We have therefore, by this perturbation approach, reduced a nonlinear partial differ-

ential system to a small set of quadratures, which can be evaluated prior to the iteration
stage of solution, and the solution of a small set of ordinary differential equations.

6.3 Lower layer streamfunction

Having solved iteratively for the layer depths in the entire basin, blocked and un-

blocked, it remains to determine the strength of the lower layer flow. This is obtained by

disturbing the interior shallow-water equations (2.3a,b) to give

-f 02. = -g9-'h°7"2 2(6.33a)
P22

- 2 = -lg-h°7" 4 , (6.33b)
P22

which are not immediately integrable analytically, but either expression can be used to

determine 02 from -t numerically.

To recapitulate, the proposed solution procedure is as follows:

(i) solve for the blotked western boundary layer,

(ii) pose an initial guess for h' at the edge of the western boundary layer,

(iii) solve for the unblocked interior using the perturbed characteristic equation,

(iv) solve for the unblocked western boundary layer, iterating from (iii) until convergence,

and
(v) evaluate the lower layer transport streamfunction.
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7. Discussion

We have developed a two-layer model of a wind-driven ocean which allows the possibility

of lower layer motion without requiring surfacing. After identifying the western boundary

layer as being critical to the behaviour of the model, we proceeded to treat the western

boundary layer. Considering the full solution to be a small perturbation to the reduced

gravity model of Parsons (1969) enabled us to simplify greatly the nonlinear, partial differ-

ential system to a set of quadratures and ordinary differential equations.

The proposed solution procedure has not yet been fully implemented, but preliminary

results are encouraging. We feel that the model presented here has much promise and we'

intend continuing with this work, first extending to the situation in which outcropping of

the lower layer occurs and then including a northern, subpolar gyre.
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Appendix

The integrals in 56can be calculated from the reduced gravity solution (6.3), (6.4) and we

shall outline here the extent to which the integrals 1,0, I2, Ml, M20, K'", I and IC31
can be simplified. The lower layer depth in the reduced gravity approximation is related
to the upper layer depth through the expression (6.5), allowing us to obtain

e- , fi -.'[I+ Ae-A( 12

e 1+A (Al)

where
IS = hE + - h,,). (A2)

This reduces (6.11a), or I,, to a double integral and (6.lb), or 12, to a single integral.
Similarly reduced are (6.24a) for 1 1 and (6.25b) for M2. The real savings to be made are
in the expressions for Ka, K 0 and K30. Now,

e 11 + Ae'.%" e- c (M3)

which with a little thought reduces (6.17b) for K 2 and (6.17c) for K3 to
1

'== I - (A4a)

K3M =0. (A4b)

Substituting (A3) into (6.17a) for K, and integrating once by parts in t, Ks is given by
-, p, Apl •-IC jC(

K, P, AP + e-'()2 eX - A 2e-( + 2AA(C - t) - e ' + A2e-A '

which as C - co, noting that C-derivatives of 7 and h° also disappear rapidly as -. o,

reduces further to
KOO AP jIJ(H, ho) - hoHd ," (M)
h, p
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The integral of h'7"i, is given by Ml and MI, with which we have already dealt, and the

integral of J(R-, ho) can be rewritten

J(, ho) ' = - I,0 (A6)
g0 00 1 ' =d,

after integrating by parts with respect to y. Much work can therefore be saved by making an

approximation for the y-derivatives in (A6) as the integral of h°7-to~ and 7- are both simply

related to arbitrary functions of y and known integrals of the reduced gravity quantities.

Therefore only four integrals need to be calculated in advance by quadrature, viz. I', I

MI' and M2', as well as the functions gij and the mapping yo t for the interior region

defined by (6.32).
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Multiple Resonant Topographic Waves in a
Barotropic Flow

Scott W. Jones

Barotropic quasi-geostrophic flow on a 8-plane is examined for the case in which
the flow is resonant with two topographic modes. The linear problem is solved
exactly and this solution is used to prescribe the form of the bottom topogiaphy.
A weakly nonlinear analysis is performed to derive the amplitude equations for the
time evolution of topographically generated Rossby waves. It is found that upoto
nine stationary equilibrium states can be found. Analysis treating the two-mode
problem as a perturbation of the one-wave problem shows small changes in the
shape and position of the domain in parameter space in which multiple equilibria
are found. Numerical calculations suggest that when the amplitude of the second
mode is large the boundary becomes more complicated.

1. Introduction

It is well-established that model solutions of large-scale topographically-forced

flows can possess multiple stationary equilibria for fixed external parameters (Char-

ney & DeVore 1978, Hart 1979, Pedlosky 1981, Samelson & Allen 1987, Hart 1989).
This observation, apparently first made by Charney & DeVore (1978), was proposed

as an explanation of the bimodal behavior observed in atmospheric flows. In their

study the basic zonal flow is destabilized by the topography and a field of Rossby

waves is generated. The resulting flow can be of two types: a strong zonal flow with

small wave amplitude, or a weak zonal flow with large wave amplitude. The latter

condition is qualitatively similar to so-called "blocked" states found in the atmo-

sphere. Although the analysis of Charney & DeVore relies on a severely truncated

spectral decomposition of the fields subsequent studies by Hart (1979) and Ped-

losky (1981) have verified the essential features of their result. Each of these model

problems have been solved for steady flow over simple (one mode) topography.

Time-periodic flows have been investigated by Samelson & Allen (19S7) and

Hart (1989). Again multiple equilibria are observed. In addition several new fea-

tures are found. For example zero-mean temporal forcing can generate a non-zero

zonal mean current. This rectified flow is demonstrated in both studies. Samel-

a
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son & Allen also find that for ranges of their parameters all steady solutions are

unstable. Instead numerical simulations suggest that limit cycles, period doubling

sequences and chaotic trajectories govern the evolution of the modal amplitudes

of the.Eulerian flow. Finally, the introduction of time-dependence permits chaotic

Lagrangian trajectories in simple Eulerian flows.

At this time the connection between the bimodality of atmospheric flows, and

multiple stationary equilibria is no more than a plausible assertion based on simple

models. A limitation of the previously cited papers is the restriction to idealized to-

pography. The motivation for this study is to investigate the consequences of more

complicated forms of topography and time-dependence on the flow. If it is fodnd

that more realistic topography contracts the parameter domain of multiple equilib-

ria, the dynamical arguments for this connection are weakened. Unfortunately the

converse situation, an expansion of this domain, is not proof of the above assertion

and many further questions must be answered. Perhaps the most crucial issue is

the identification of the triggering mechanism responsible for the flipping between

the stable modes.

In the following pages we wish to determine the effect of a multiplicity of reso-

nant modes on the size and position of the region in parameter space where multiple

equilibria exist. As will be shown there are several ways in which two (or more)

mcdes can be simultaneously resonant. Here we will only treat the most simple

case. The organization of the paper is as follows: In §2 the flow geometry and basic

equations are presented. The linear problem is solved exactly in §3. A weakly lion-

linear analysis of the near- resonant expansion is perlormed in §4. In §5 these results

are used to examine the domain of multiple equilibria. Finally the conclusions and

suggestions for future research are discussed in §6.

2. The model

We consider barotropic flow in a zonally periodic channel. The geometry and

the rectilinear coordinate system are shown in figure 1. The width of the channel

is L and its mean depth is D. At this time we do not explicitly state the form of
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I
L x

Figure 1. The zonal channel and the rectilinear coordinate system used in this
paper.

the bottom topography, however, the general form is

N
h(x,y) = sin 7ry 1 a ne'-. (1)

n=1

The basic flow is oscillatory and is given by

uo = (6w sinwt, 0). (2)

To simulate the latitudinal dependence of the Coriolis parameter we let f = fo+floy.
Consequently the Rossby number can be defined as e = w/fo. The problem is
governed by the non-dimensional quasi-geostrophic vorticity equation

Ct + qu. V( + /3v = -r( + su . Vh (3)
and the boundary condition prohibiting normal flow at the channel walls. Here and
throughout the paper subscripts will be used to denote differentiation with respect
to the subscripted variable. In (3) the velocity has been nondimensionalized by 6w,

horizontal lengths by L, time by l1w, the vorticity by w and the bottom topography
by eDF. The terms on the right-hand side of (3) represent damping by the bottom
Ekman layer and stretching or compression of the vertical fluid columns respectively.

The coefficients of these terms are

r 911i7f. =7 (4)
wD ' s=7714
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where v is an eddy diffusivity. Finally the parameters 1r and P are

6 = __.

We let-the velocity field be written as the sum of the basic flow, uo, and the

disturbance velocity, uR

u = uO + uR (6)

where uo is given by (2). Now (3) can be written as

L(O) = -rV 20 - s sin t h, - j(0, V 2?p + rh) (7)

where

,£ = V 2 8+iqsintV 28a+.. 8
V20 = C

(u,V) =(-¢,¢.)

J(a, b) = ab - b. ay.

Equation (7) defines the model problem considered throughout the remainder of

the paper.

3. Linear solution

To simplify the subsequent analysis we separate the streamfunction in a manner

analogous to (6)

0 = -y sint + O(x,y,t) (8)

and determine the form of the disturbance streamfunction 4. We first consider the

linear forced and damped problem

I (O) = -rV 2 - 3 sin t h,. (9)

The solution is obtained by making the ansatz

4 = A(t) sin iry eikx (10)

and letting A(t) have the form

A(t) = G(t) ei"co+ ' t - t (11)
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where -= = kG/3a 2 and a' = 7r2 + k2. The result of these substitutions is an
integral expression for G =

G(t) = iij e-i'C¢°t"+'t'sint ' dr' (12)

where S = ks/a 2 and -y = r - i . This integral is easily solved by integration by
parts and application of the generating function for the modified Bessel function I,

ex Cost = Io(z) + 2 E Ij(z) cos jt. (13)
j=1

The final expression for A is

A(t) = C-e "cosC - e-.I J(.) (y cosjt +j sinjt (14)
77 j= j2 + "(1

It is easy to show, by integrating over a cycle of the forcing, that the flow has a
non-zero mean zonal current. The denominator inside the sum can be expanded to
giveI

j2 +-Y2 = j2 - + r2 - 2ir 
(15)

so, in the absence of damping, we have the resonance condition

j = 72 k (16)
r+ k 2 '

The dispersion relation (16) is shown in figure 2. Because j is restricted to integer

values there are no resonant modes for f < 27r. However, for P > 21r two modes are

simultaneously resonant with j = 1. For 8 > 4,r we add the two modes that are

resonant with j = 2, and so on for larger values of 3.
We now choose the topography to consist of the two resonant modes that satisfy

(16) for j = 1. Thus the topography is given by

h(:, y) = sin iry(al cos k1: + a2 cos k2z). (17)

In the introduction we claimed that this study would extend the previous work by

incorporating more realistic topography. However the addition of a second mode
would appear to be a modest step. We argue that because the linear solution is
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Figure 2. The dispersion relation (16).

dominated by the resonant modes, and for 27r < # < 41r there are only two resonant
modes, that in this range of f3 the two-mode problem is a good approximation to

general topography. For steady flow the resonance condition is a2 -=/uo where u0

is the steady zonal flow speed (cf. Pedlosky 1981). Consequently for steady flow

there can only be one resonant mode. By the preceding argument, the work of the

previous authors is probably a reasonable description of steady flow over general

topography.

4. Finite-amplitude analysis

The analysis of this section parallels that of Pedlosky (1981) who emphasized

that the finite amplitude analysis of topographic waves is considerably simplified

by restricting attention to the near resonant state. To do this we introduce the

detuning parameter A such that

j + 'A()



396

and expand the streamfunction 0 in the asymptotic series

= a4? ) + a20 (2) +". (19)

If we rriormalize the external parameters by r = a2= , . = a3i, 1'- a3f and

separate time into a fast time, t (0(1)), and a slow time, r (O(a2)), then (7)

becomes

£(O) + a 2 = -aa2 V 2 - a3;sint h, - 7J(4?, V 2¢ + a 3f h) (20)

Inserting (19) in (20) yields a relatively simple hierarchy of equations for 4.

To solve (20) we also need to consider the time and zonal average of (20)

27. + 77F(0V 20?)- + s3 ) + u = 0 (21)

to determine the slow time mean flow correction. The averages are defined by

=lim -jI

27r o . LO d.

and for future reference
= f()dy. (22)

The O(a) problem is
£(4(1})=0. (23)

The solution of (23) is

4l) - A(r) sin iry ei (kVjCO¢ t+t) + B(r) sin iry ei(k2YCOst+t). (24)

The goal of the subsequent analysis is to obtain an expression for the slow-time

evolution of the complex amplitudes A and B.

At O(a2 ) the problem becomes

£(0(2)) = _7j(0(,), V2 0( 1)). (25)

Unlike the single topographic mode case, the Jacobian in (25) does not vanish.

Instead wave-wave interactions produce sidebands whose wavenumbers are the sum

I
1
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and difference of the two topographic modes. Also at this order there will be a

slow-time correction to 4(2). We represent 4(2) by
0(2)(Y, t, T) = 0(2)(X, Y, t) + (b(2)(Y, r) (26)

where

0,(x, y, t) = sin 2ry {G+ABeik+X C ° cos t+2t) + GAB'eikeik7cost} (2

and * denotes the complex conjugate. Here the coefficients G+ and G_ are
7r?7k+k 2

G= -
2a.(2- 3k+/2.)

- rt7k 2G_ 2,8~k
2/)

where k* = k, ± k2 and a2 = r2 + k 2. From (21) it is clear that the mean zonal
flow 4(2) cannot be determined at this order. That calculation must be deferred to
O(a4).

At O( 3 ) the equation determining ) is

£(0 (3)) + V20(1) = -V 20 (i ) - .sint hx - A( )k±
_7-(J(0(1), v 20(2)) + j(0(2), v24(1))). (28)

The solvability conditions for the amplitudes A and B are obtained by requiring

that the terms on the right-hand side of (28) do not project onto the homogeneous

solutions. The secular resonances are removed by multiplying (28) by (1)" and

averaging over the spatial domain and one cycle of the forcing. Because

() (() ' = b(3).C( 4 (l)- )."t (29)

we have, after averaging

12 27rkAA,+rA-i + KIB A+i x

sin 2ry (,(b(2) + a2411(2) dy = J,(kT7)

B,+rB - i A+ -- I 2 1A 12 B+z a x (30)
Sra 2

]sin2fy (I,1)2 + C24(2))dy =
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The coefficients K = - I1 + K 12 and K 2 = K 21 + K 22 are found from

1(11 = 7r(aG-(k2 + ik-) - c4+(k2 - 2I+)

K12 = 7rk 2(k 2(C+ - G-) - (k + k+ + .G._))

K 21 = 7r(Ct2 G_.(k 1 - lk-.) - a 2G+(k1 - k)

K 22 = ,rk2(k 1 (G+ - G-) - 1(k+G+ - ka_)).

To close the problem (31) we need an expression relating D(2) and the amplitudes.

To do this it is necessary to consider (21) at O(a 4 )

,q)2 + ,=4 () = -,(0(')v0(3) + O.M2)v (I)) " '  (1

As noted by Pedlosky (1981) it is not necessary to solve for 0(3) explicitly. In-

stead multiply (28) by V 2 0 (1) and (23) by V20 (3) . Adding these two equations and

averaging over x and t yields

O.MV2€(3) + 0¢(3)V201_¢l2(I*" +

Using the result + 2 ) r (32)

(V20()) = 2=14A12 sin s 2ry + 2a4lB 12 sin2 2ry (33)

and combining (31) and (32) we find I
,10) + f4O) = ! sin27ry{c4(A 12 + 2FIA12 ) + ac(IB I2 + 2FIBI2)}. (34)

Combining the product of A" and (31) with A times the complex conjugate of (31) I
we obtain

IAI + 2f AJ2 - .. J,(k, ,) A. (35) N
where A = A, + iAi. A similar expression is obtained for B. Now using (35) in (34)

we have
2rS sin 2iry {a, a'J(k, 7A, (r) + a2a 2 J,(k2 77) B,(r)}. (36)

I
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From (36) it is apparent that 1I( 2)(y, r) can be separated. Let

.(2)(y, 7) = I1(sin 2,ry - 27ry)U(r). (37)

Using "(37) to evaluate the integrals in (31) and to obtain an evolution equation for

U in (34) we derive the following set of five amplitude equations

A, + FA, + (A + rL B12 + -r-)U)Ai = - J (k1 7)

KI 2 k, ir2 k,UA "
Ai+ FAi + (A + 772 JBI + (T - )U)Aj = 0

12+k 2  
2k2UB = ra2

1j,(-k- + +( J)U)B - _ 2J (k2 77) (38)

K2 .2 k2 7r2 k2, + fBi + (A + 77 I + (- = 0
22 2

S+ FU = 23 (a, a1 ji(k? 7)A, + a92a2Ji(k2 71)B,).

We can simplify (39) by rescaling the variables. Introducing the new variables

ra,' s,(kji,)A
Ia2

02

U= -2-a J(k 17)U&

K1,2 = 7fK.a2 1 (k 2,177)
tg~ - 2 4 J

ala - 2a1S2,1

= 2iFa, 2 (kl, 2  7 rr2kl 2 ) J 2(k1
r )

4 01,2

aJi?(k-.yi)
a 2~j 2(ki 7i)

gives

A,. + FA, +(A+Kl7B 2 - pO)A, = 1

Ai + fA +KIB2 pl)A, = 0
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Br + FB7 + (A + K2IAI- P2U)B, = 1 (39)

Bi + F , + (A + IC2 Al 2 - P2U)3, = 0
U+U-Ar-XB, = 0

Analysis of the structure of (39) will constitute the remainder of the paper.

5. Multiple equilibria

We are interested in finding the stationary solutions of (39). Therefore we set all

time derivatives equal to zero. We now wish to write (39) (suppressing the tildes)

as a single equation. Combining the A, and Ai equations we get the two relations

rJAI2 - Ar (40)
r 2 IAI 2(r + - + + 12Bi2

- P1 U)2) = 1. (41)

r
Similarly

rIB 12 B, (42)

r2-12(r + A + 621A12 - P2 U) 2 ) = 1. (43)

Using (40) and (42) to rewrite the expression for U and substituting in (41) and

(43) we find

A 12(r 2 + (A - A11A12 - A21B12)2) = 1 (44)

IB12(r2 + (A - A31A12 - A41B12)2) = 1 (45)

where A 1 = P', A2 = x - r 1 . A3 = P 2 - K2 , A4 = P2X. We can eliminate A1 by the

rescaling

H \23JA1\2 A/3 12I

I 1 - 1

2 =\A-2/32

so now

H( f 2 + (A- H - CII)2 ) =

I(f 2 + ( 2 _ - )2) = 1 (46)
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where,, = A2/Ai, c2 = 1a/Al, C3 =A 4/A1 .

First we examine the case in which the amplitude of the second topographic

mode becomes small. In this case cl and c3 go to zero like (a 2/a) 2 and we recover

the one-mode equation of Pedlosky (1981)

H( + (,& - H)2) = 1. (47)

We now calculate the domain in ( ) space in which multiple stationary equilibria

are found. Rewriting (47) as

F(H) -,+( _ H (4..8)

we can calculate the transition from one to three solutions by requiring that

F'(H) = 1

F(H) = H.

From these constraints we derive a set of parametric equations that defines the

border between the one and three solutions states

f2 = 1 1 (49)- 4H2
1

2H 2  (50)

The restriction that f2 be positive restricts H _ (1/4)1/3. At H - (1/4)" / 3

is : 1.8899. For large H, z , H so 1/. Furthermore, = 3/4 and

i-min = 3/2. These two values occur for the same value of H (H = 1). This implies

that the point (i, f2) is a cusp. The curve given by (49) and (50) is shown in

figure 3. From this curve it is apparent that at large values of the detuning multiple

equilibria will be found only if f2 is quite small.

A general solution of (46) can, in principle, be found in a similar way. This

solution can possess up to nine real roots. As before

f2 _1 (51)
H 4H2

but now we must solve

1&3 - (F + 2c 2H),&2 + (f2 + c2H 2 + 2c2F)A - F( 2 + c2 H) - cl = 0. (52)



402
0.80

0.60

0.40 one stationary

0.40 solution

0.20

three
stationary solutions

0.oo 0o,-.. .... , .................... ..... ........... I

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Figure 3. The domain of multiple equilibria for the one-wave case.

Rather than solve this cubic we look at the behavior in some limiting cases. For the

sake of illustration consider the situation c1 > 0, c2, c3 -+ 0. Equations (49) and

(50) become
2 _1 1

H 4H4

A = H + .(53)

The relationship for L is identical to (50). It is possible to estimate the stretching

of the multiple equilibria domain by evaluating
C, (54)

,&2 +

For large values of A, & , A, so the effect of multiple resonances is small. However,

at small values of there will be a stretching and shifting of the boundary. For

cl > 0 the shift is towards larger values of A. Equation (53) has been calculated

numerically. The results are shown in figure 4. We note that for c2 and c3 small

requires that cl be small as well. Consequently the effect of multiple resonances in

this flow is quite small. However we note that for other multiple resonances (e.g.

multiple cross-stream modes) this may not be the case.
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0.60
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0.40

0.20

multiple
stationary solutions

Figure 4. The effect of two resonant modes on the parameter domain of multiple
equilibria in the limit c2 = 0 and c3 < 1.

Although multiple resonant modes do not modify the domain of multiple equi-

libria substantially there is increased structure inside this domain. This is because

the are up to nine stationary states inside the domain as opposed to just three for

the single wave case. This internal structure is shown in figure 5 where the number

of roots has been determined numerically. Note that in figure 5b the boundary has

become more complicated by the addition of a second spike.

Finally we consider a special case to illustrate how the nine roots arise. Consider

(46) in the limit cl, c3 small and c2 large. In this case we have

H (2+ -H-cl ( (f2+ C2H)2) =. (55)

For c1 = 0 there are three roots of H but for cl nonzero there must be nine roots.

The effect of this additional term, when cl is small, is to "split" the three basic

roots into three triples of roots.
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Figure 5. The parameter domain for multiple equilibria. (a) c, - 0.03,
cz - 0.1, c3 - 0.3. (b) ce - 0.3, c, - 50, c 13 1.
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0. Discussion

In this paper we have derived a general set of equations that determine the

structure of flows with two resonant modes. Here we have investigated a case in

which-one meridional and two zonal modes contribute to the resonance. However it

is possible for two meridional modes and one zonal mode to satisfy (16). The zonal

wave number must be 2

k2 = (jm 1 - 2  (56)
j2 -(5

where the m's are the meriodional wave numbers and the j's are integers.

Elucidation of the multiple equilibria boundary, as determined by (46), for real-

istic parameter values probably requires detailed numerical investigation. In addi-

tion a determination of the stability of the solutions is necessary to understand the

mathematical equations (46) as a model for a physical system. One or more steady

solutions appear to exist for all parameter values. If this steady solution is stable

the Eulerian flow will be regular. However if there is a regime for which the steady

solution is unstable the Eulerian flow may be chaotic.

As mentioned in the introduction the behavior of Lagrangian trajectories may

be chaotic even if the Eulerian flow is simple. Figure 6 contrasts the structure of the
two stable solutions of the one-wave amplitude equations that are found for fixed

parameter values as determined by stroboscopic portraits of Lagrangian particles.

In both panels there is a mixture of regular and chaotic orbits, however, it is clear

that figure 6a is more regular than figure 6b. It is of fundamental interest in fluid

mechanics (and a critical issue in oceanography) to determine if Lagrangian particles

are sensitive to transitions in the Eulerian flow. For example can drifter trajectolies

be used td signal changes in the amplitude equations from steady solutions to liit

cycles to chaos?
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The Parametric Model of Western Boundary
Outflow

Roland Mallier

An infinite system of coupled ordinary differential equations governing the viscoiner-
tial western-boundary layer in a two-dimensional one-layer model of the large-scale
ocean circulation is presented and truncations of this system at first and second
order are discussed. It is found that the second order truncation has pole-like struc-
tures present for an ocean basin with infinite aspect ratio. Numerical calculations
for the non-infinite aspect ratio suggest that there is a possibility that the infinite-
aspect ratio may be a singular limit.

1. Introduction
Perhaps one of the best known features of the large-scale circulation in an

ocean is "westward intensification", the boundary-layer that arises near the we t-
ern boundary of an ocean, with the Gulf Stream being probably the most famous
manifestation of this; the separation of the Gulf Stream is a particularly fascinatinig
phenomenon. Various simple models of the ocean circulation, such as those due to
Stommel (1948) and Munk (1950), which display this westward intensification hat e
been constructed and it is these simple models with which we shall work and to
which we shall seek to apply boundary-layer techniques, of the kind first used by
Goldstein (1930), which are more usually found in areas such as mechanical engi-
neering with the hope that we will be able to shed some light on the phenomenon of
separation and the onset of recirculation. The report is set out as follows: in §2 we
shall derive the basic equations and review the first order analysis, which we shall
attempt to extend to higher orders in §3. In §4 we present a simple model which
displays some of the behavior that arises from the boundary-layer analysis. A brief
appendix summarizes our numerical techniques.

2. The First Order Analysis

In this section we will examine the viscoinertial boundary-layer which arises

at the western boundary in a two-dimensional one-layer model of the large-scale

circulation in an ocean [for a review of such models, the reader is referred to the

principal lecture in this volume by M.C.Hendershott]. We will concentrate on two

I I I II



I
409

such models: the Stommel or "bottom drag" model (Stommel, 1948) in which the

frictional forces are represented by an effective bottom drag -rV 20 so that we cani

write the time independent potential vorticity equation as

J(O,q) = W - rV 2 ) (1)

which we will examine from a largely analytical standpoint; and the Munk or laLeral

friction model (Munk, 1950) in which the viscous terms are represented by lateral

friction -- V4 0 so that the time independent potential vorticity equation becomes

i1

J (0,,q) =W + 1V 4  (2)
Re

which we will examine from a largely numerical standpoint. Here of course q =

V 2 1, + oy is the potential vorticity, J (a, b) = aiaab - c 3a8.,b is the Jacobian and

W = curlr is the curl of the wind stress. We can write J (0, q) as

J(4,,q) = j (,V20,) +3;. ('3)

where f6 x is the Coriolis acceleration.

To make the problem considerably more tractable we will restrict our attention

to a zonally uniform interior (Welander, 1976) with the flow in the interior given by

4,= 2cos (2) (4)

and the curl of the wind stress by

W= V2 0 =-.tV Cos 2L (5)

for the Stommel case and

W=- V4o=-Wcos (6)
Re 2L~

for the Munk case where

W, = "r and W, = 8ReL (7)
2L21Y
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We will suppose that the western boundary of our ocean lies at x = -1. As

Ol[=-l # const, clearly to satisfy the boundary condition a boundary-layer is re-

quired at x = -1 in which x derivatives are assumed to be substantially greater

than y derivatives

lax Oy

In this layer we will seek to balance the viscous term Re or -rVi and the

Coriolis acceleration Po,,. We will introduce stretched boundary-layer coordinates

C and 77 about the wall (x = -1) and y = -Ly where the curl of the wind stress

vanishes. The position y = -L. is chosen because

I-cos o
,92n/ Co =-Ly = 0 (9)

for n an integer so that a Taylor series in y about that point has a particularly

simple form. We will set

x +1 y y+ LY10
6 and 17 _V(0

and denoting

A - and (±= 2(11)

the balance of terms tells us that

rI

6s L and 6 m= (#Re)-3 (12)

[for those readers more familiar with the scalings used in Pedlosky (1979), A is

equivalent to 7r _) 2, where 6t is the inertial boundary layer thickness, and may

be thought of as a measure of the nonlinearity of the equations] so that we recover

A r2e (i
Of~ + JBLO) ---- sin B VL1 (13)

for the Stommel case and

¢k + ( Vjtk' ) =V-2sin + V4tI/ (14)

S-= sin 2
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Figure 1: The geometry of our problem in unstretched coordinates.

for the Munk case where

V2 (aht~ + eO?,,)p 15

with boundary conditions that 0 --+ 0, = 2sin (2) as - oo, --- 0 as { -*oo

and Ojt=0 = 0 with an additional condition for the Munk case that either O1ioe=o = 0
for no-slip boundaries or _t{40:0 = 0 for slip boundaries. [We require an additional
boundary condition for the lateral friction case because the presence of V7LO as
opposed to -VBLO in the bottom drag case means that the governing equation is

fourth order as opposed to third order in .]
The observant reader will note that physically A is always a positive quantity.

Lwhich corresponds to an outflowHowever, we could equally well have taken r/- %Lwihcrepnd oa ufo

region as opposed to the region of inflow which we have chosen to consider above
and this would effectively change the sign of A and hence we can think of A > 0 as

corresponding to an inflow and of A < 0 as corresponding to an outflow. As we shall
see at a later stage, the sign of A does make a significant difference to the problem.

The geometry of the problem is shown schematically in figure 1.
As 7 --+ 0, 0=,,- ir 7 and we will suppose initially following Ierley & Ruehr (1986)

[to which we shall refer hereafter as I&R] that this leading order term determines
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the flow in the boundary-layer and set k = 7rtioo ( ) . ' ake c = 0. This gives us

0o + A(4o4o o¢' =( oi (16)

for the Stommel case where 0' =,900 and

¢10 + A (0{0 0 0 (17)

for the Munk case with boundary conditions that 0o(0) = 0, 0o (0) -" 1 as -+ 00

and 0' ( ) -- 0 as -- oo and for the Munk case in addition that either 0'(0) = 0

(no-slip) or 0"(0) = 0 (slip). Integrating these equations once from to oo with

respect to using the extra condition that ¢"(oo) = ¢"I'(oo) = 0 yields

0- 1 + A (00 - = (18)

for the Stommel case and

0- I + 0 ( _0 0 "(19)

for the Munk case. The latter equation is the parametric model studied by I&R

and also IW'in & Kamenkovich (1964).

The bottom drag case has an exact solution

0o = 1 - e- A (20)

where Ap 2 + P - 1 = 0 or

- 2 V +A (21)

so for a solution to exist we need 1 + 4A > 0, i.e.

1
A > A, = -1 (22)

44and we can also note that for -1 < A < 0 there are two solutions arising from the

± in the above formnula for M.

In the Munk case, A - 0 corresponds to the linear Munk problem with solutions

=1-e-t cos ( ) + -sin ( (23)

00 2 /3-
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for no-slip boundaries and

00 C- [cossin (24)

for slip boundaries. The Munk case has been extensively studied numerically by

Il'in & Kamenkovich (1964) and I&R with the latt e work containing substantial

analytical work in addition to the computations. It was demonstrated that just as

in the bottom drag case there was a critical value of A, A, below which no solutions

existed; I&R give values for A, of -0.79130 for the no-slip case and -0.29657 for

the slip case. It was also shown that for both boundary conditions there are two

solutions for A, < A < 0 and that for the slip case there are also two solutions for,

A > 0. In the course of this project we have found a possible second solution for

A > 0 for the no-slip case but further tests must yet be performed to verify that

this is a solution of the parametric equation involved and not merely a solution of

the numerical discretization used. In either case it must be emphasized that when

more than one solution exists only one of these solutions is stable and physical; any

other solutions that might exist are unstable and unphysical. The results of I&R are

shown in figures 2(a) and (b) for no-slip and slip boundaries respectively where they

plot a parameter they christen /3 as a function of A; /3 here is the lowest derivative

of 0o which has not been specified at = 0; for the no-slip case both 0 (0) and

00 (0) are specified so that /3 = 0" (0) and similarly for the slip case 3 = € (0).

In deference to the oceanographers present (and under intense pressure from Bill

Young) I will rechristen this parameter 0 as S.

Our attempts to reproduce figures 2(a) and (b) are shown in figures 3(a) and
(b) respectively; our possible new branch is evident in figure 3(a) and it can be seen

that for small negative A our code is producing some peculiar results for the no-slip

case. Our code differed from that used in I&R in that we solved the fourth order

equation directly rather than using the third order equation which we obtained from

integrating once with respect to as was done there; we did this to ensure that our

results from this section were strictly comparable with other parts of this project

and, because of the nature of the solutions [they contain exponential oscillations as
.- oo], as far as accuracy of the results is concerned the fewer derivatives one takcs

the better. It can also be observed that the slip case appears to behave in a more
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Figure 2: (a) no-slip boundaries, 4i (0) = /3())[= S()I). (b) slip boundaries,
€ (0) = /3(A)[= S(A)]. In both cases, actual ,3 shown as a solid line, theoretical I

prediction from a continued fraction shown as a dotted line. [From I&R.]

orderly fashion than the no-slip case and this appears to be true to a certain extent

of this project as a whole. [Details of the numerical techniques used are contained

in the appendix.]

These solutions can also be plotted in physical space and again we will show the

results obtained by I&R where they plot o( ) as a function of C. These results

are shown in figures 4 to 6 with our possible new branch shown in figure 7. The

parametric description of the solutions is split into the upper (singular) branch which

is labelled I in figures 2(a) and (b), the lower branch (II) and the bottom branch

(III). In both cases it is branch II that is stable. Several differences between the two

boundary conditions are apparent, one being that for the upper branches both peak

height and location depend upon the value of A in the no-slip case whereas in the slip

case only the peak height depends upon A. Figures 6 and 7, the lower branches (111)

for A > 0, would appear to correspond to a southward flow immediately adjacent

to the wall in the boundary-layer. This arises because in our formulation, as can be

seen from figure 1, both a northward and a southward flow from regions of inflow to

regions of outflow are possible. It should be recalled, however, that this particular

branch (III) is both unstable and unphysical.

mm mimmlimmn m mmmm im i mmmm m m m mm mm
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Figure 3: Our attempt to reproduce figures 2(a) and (b) respectively.

3. Higher Order Analysis

We have seen that for both the Stommel and Munk cases there is a critical value
of A, Ac, such that for A < A, these parametric models have no solutions. In a series
of numerical experiments with a lateral friction regional model lerley (1987) found
that for a sufficiently large ratio of basin scale to viscous boundary-layer scale, that
is for sufficiently small e, there is very good agreement between the failure of the
boundary-layer model, that is A < A,, and the onset of recirculation in the solution
of the partial differential equations. However, for less extreme basin ratios, that
is for larger -, the onset of recirculation was deferred; this would seem to suggest
that A, depends upon the ratio E - L)2 In figures 8(a) and (b) we show some
of the results from lerley (1987) for a slip boundary and A = -0.7 [recall that
A, = -0.29657 for E = 0]. It is clear that even for these extremely small values
of e there has been a substantial increase in the range of outflow values and lerley

(1987) makes a very crude estimate of A, (E) \,I,=o - 70We.
We will try to predict this dependence upon e by keeping y derivatives in the

equation. We will take a Taylor series about 77 = 0 of the streamfunction that we
match onto as -- , 0, , = 2 sin (=)

E 7~ ,'T ' (-7)7 (25)
n-O 2 (2n + 1)!"
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x x
Figure 4: Upper-branch solutions at three values of A. (a) no-slip: both peak height
and location depend upon A. (b) slip: peak height but not location depends upon

A. [From I&R.]

This suggests that we might follow the procedure suggested by Goldstein (1930)

and seek a solution in the boundary-layer of the form

7r 77F, 7" On(263)
n=0

Then at Q (72n+1) we obtain, again denoting O'n = 1€,
01 + AE [(2m+ 1),O' " -(2n-2m+ 1).,,I

nO

+ eA E (2m + 2) (2m + 3) (2m + 1) 0'_ I+,
- eA 1_,(2m+2)(2m+3)(2n-2m+ 1)¢,n-mO'm+i

m=O

-(lr) 2 +2 15_ (-1) qYO - c (2n + 2) (2n + 3) On+1 (27)

for the bottom drag case and j
On + A~ E(2m +1) O-,m' - (2n -2m +1)~4 I.,nn

I
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A= 2.00 A= 2.00
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Figure 5: Middle-branch solutions. (a) no-slip boundaries for A near the "nose"
(dashed line), near zero (dotted line), and moderately large and positive (solid
line). (b) slip boundaries for A small and negative (dashed line), small and positive
(dotted line), and moderately large (solid line). [From I&R.]

+ CA E (2m + 2) (2m + 3) (2m + 1) On4'm. ,+,
Sm=O

- CA 1 (2m + 2)(2m + 3)(2n - 2m + 1) ._.n'm l
m=O

- 7r ) 2 n+4 62 (-1L + 0""+ 26(2n +2) (2n +3)~~2 (2n + 1)! n""+

+ C 2 (2n 2 + )(2n + 3)(2n4)(2n + 5) +2  (28)

for the Munk case, with boundary conditions that

On(o) ---0 (29)

On (0-+(f)2 (2n+1)! as 6oo (30)

O'( )--+,0 as --+oo (31)

with the additional condition in the Munk case that either 0' (0) = 0 for no-

slip boundaries or 0" (0) = 0 for slip. We will restrict our attention to the two
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Figure 6: Lower-branch solutions for slip boundaries at three values of A. For
moderately large A the peak height becomes independent of A, while the peak-height
dependence scales as in figure 4(b). [From I&R.]

component case so that 42......................0 and we get a coupled pair of

ordinary differential equations

o A+('{ 4 €o€l') +6 A(46, - €o4) = (0106 (32)

01 + A (0€ - 3;'1 + 30,4 - Oo€4') - 126A 1€' = -0" (33)

for the StommeA case and
0' + A(O 4- 0o,) 6A(' ,- =0) =o0",, + 12,e, (34)

030 0 €13 0€€" 12€€' 0 '1"
of + 0 (0o0 -30...1+ 3 - OoO') - 12cA\10 = 0"" (33)

for the Munk case. In both cases the second equation can be integrated once from

to o: yielding

01,+ _ + A (400'' - €oO - 30"01)- 6A = -4 (36)

for the Stommel case and
fl.

2

41 + F + A (40-'1 - 3¢Y1 z)- 6-A4 -=." -3" '  (37) 0
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Figure 7: Our possible lower-branch solution for no-slip boundaries at A 0.5.

for the Munk case. It should be noted that there is a term due to the wind stress,

-4 in the first equation for bottom drag but not for lateral friction. The corre-

sponding term in the lateral friction case will only come in if we keep 02 (c).

3.1. The case e = 0

For an infinite aspect ratio these are partially decoupled (the coupling parameter

= 0) and we can again integrate the first equation in both cases to once from

to oc with respect to to obtain

00 - 1 + A (0,2 _ 00) = 0(8 (38)

7r 
2  

p i e/o0 + - + A (4k' -oO' - 31) = -(39)

for the Stommel case and

- 1 + A ( - 0) =0 (40)

2
01 + + A (40 '' - 00"- 30"01) 0"- '  (41)

for the Munk case.

In both cases the first equation is of course simply that obtained earlier when

we considered only the one component case and it should be pointed out that the
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0

Figure 8: (a) solution of the regional model for ik for c = 1.6 x 10- and A -- 0.7 for
a slip boundary. Although A < A, a parametric solution persists. (b) as in (a) except
that c = 2.5 x 10- . There is a region of strong variation extending southward from
the northern wall to form a closed recirculation cell and a boundary-layer solution
does not exist for the outflow region. [From lerley (1987).]

second equation in both cases is linear in 01 (c). The system is completely decoupled

for A = 0 when 01 is simply a linear multiple of 0, 0 1 = -- 0o. For general A,

once again the bottom drag equation has a solution

00 = 1 - • - A (42)

whre2 (1 + Ce - 14 + De + Ee -2 pf + Fe - 3 9) (43)

where01 
4(1+C

D 2=D - J2EA and C=-1-E-F (44)ju =- , 2 3 - , 21A 2(4 - 3,)'
I
I
I
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and I is given once again by Ap 2 + A -1=0. It can be clearly seen that, when

thought of as a function of y, 01( ) has a series of poles or resonances at p = 2

corresponding to A = A,: - which is the nose for 0, at y = - which corresponds

to A - and at I= which is A=-. Thus it can be seen that we have a

series of poles at locations tending towards y = 1 from above and A = 0 from below

and it seems probable that for the e = 0 case that if we kept one more equation,

i.e. if we n' longer set €2() _= 0, we would get additional resonances that continue

this series. If we evaluate the second of the bottom drag equations at = 0, using

O0 = 1 - e- "  and 4 1 (0) = 0, we recover

0' (0) (1 + 4Ap) = €S (oo) (45)

where we require €1 (oo) = -=2. Clearly we cannot satisfy the boundary condition

on €1 as - oo when 1 + 4Ap = 0. This was the resonance we obtained at
and A = -- I. However, we can find 01 ( ) such that 01 (0) =0 (oo) = 0

and 0' (oo) = 0 which is a free homogeneous solution. Similarly, evaluating the

derivative with respect to of the second bottom drag equation at = 0 gives

P€'4 (0) = -0' (0)(1 + 3pA) (46)

since 1 - pyA = M. This says that we require 4' (0) = 0 when 1 + 31LA = 0 which

corresponds to I = I and A = -2. Hence we lose one shooting parameter and we
will be unable to satisfy the boundary conditions on both 01 (C) and 44 ( ) as -* 00

because since we have a linear equation for 01 ( ) we can normalise it to anything

we desire. One further point of interest is that these two relations between 4 1 (oo),

0' (0) and 0'" (0) turn what we viewed originally as a boundary value problem into

an initial value problem except at the points where these resonances occur.

These resonances seem to be a fairly ubiquitous feature of the second term in

a boundary layer expansion; they crop up in the field of magnetohydrodynamics

(Buckmaster, 1971) amongst other places and also in the Munk case as we can see

from figures 9(a) and (b), where we see that the no-slip case has numerous such poles

but the slip case appears only to have one. Glenn Ierley (private communication)

has tried to fit the structure that we obtained numerically for the poles in the Munk

case with several trial analytic functions but without success.
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Figure 9: (a) S, = 44' (0) for the no-slip case. (b) S, = €4 (0) for the slip case.

The spatial behavior of 01 (0) either side of one of these resonances, that on

the upper branch of the slip case, is shown in figures 10(a) and (b) and it can

be seen that the function appears to have changed sign at the poles in the sense

that €1 ( ; A = -0.225) is remarkably similar to -€1 ( ; A = -0.229) [both functions

supposedly asymptote to - as - 00 which seems to indicates that they are still

highly oscillatory at values of as large as 151.

3.2. The case c 3 0

The case - 96 0 is much more complicated. To date an analytical solution for

the bottom drag has eluded us except at A - 0 where the governing equations are

0 ----_C- 00 -- 6COI (47)
4

0 = -01 (48)

which has the simple solution

00 = 1 - e- ( - 7.2 ee - ( (49)

_1- e f ( 0 )24

t imiiliD gH im mDam~d •i
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Figure 10: (a) the function 01 on the upper branch for slip boundaries for
A = -0.225, which is very close to a resonance. (b) as for (a) but for A = -0.229
which lies on the other side of the resonance.

The Munk case can also be solved for A = 0, the equations being

Oo - 1 = .o + 12e€' (51)

S- 1(52)

which has a solution

- e~l-.~Cos ( , )

- --- - sin N (53)

1- e-, [cos ( 3 + sn(3:)](54)

for no-slip boundaries and

001 - e cos (-2)
+1 27r2e r7r25 3t__)+~ ~ ~ i (-2f3 -J (55)
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Figure 11: So (A) for c = 0.01. (a) no-slip boundaries; observe the apparent splitting
of the upper branch. (b) slip boundaries.

L2 I
24 - 1 - e- cssin~--)j(6

for slip boundaries.

Numerically, we encountered several difficulties trying to analyze the lateral

friction case, most notably that we were unable to reach the 'Knose" for e 34 0
and instead hit a numerical wall that we were unable to push past as we tried to

locate a nose; this made our original objective of finding how A, depended on C

impossible. The curves that we were able to construct are shown in figures 11(a)

and (b) for no-slip and slip respectively. The slip case looks as though a nose

should be there and it should be merely a question of edging very slowly out along

the curves to locate it; however, the plot of S1 for the slip case (figure 12(b)) shows

the two branches of S, diverging as we decrease A indicating that there may well

be no nose. This may simply be because of simple numerical failure [details of
the numerical methods employed are contained in the appendix] caused by the fact
that we map the semi-infinite region (0, oo) onto (-1, 1) and because the solutions

oscillate exponentially as -- oo when we make this transformation we concertina

these oscillations and hence, as pointed out in I&R, there is very little spectral

decay (our spectrum decayed in places by as little as 10-' which tends to make one
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Figure 12: S1 (A) for e = 0.01. (a) no-slip boundaries. (b) slip boundaries.

treat the results warily; we were unable to use a larger number of spectral basis

elements to get better spectral decay because the time per iteration appears to be

proportional to the cube of the number of polynomials used and it was alredy

taking just over thirty minutes of cpu time on a Microvax to converge 0 and €1

for each value of A; researchers attempting to tackle similar problems in the future

might be well advised to employ some sort of basis set on the semi-infinite interval
itself to avoid compressing these oscillations).

It is also possible that there is a physical mechanism at work. We see in figure

11(a) that the upper branch of So for the no-slip case appears to have undergone

some sort of splitting mechanism; we have tried to find a similar splitting for the
lower branch but to date without success. In figures 13(a) and 13(b) we show Oo

for points above and below this apparent splitting and we can see that they are
very similar with figure 13(a) having a slightly higher peak than figure 13(b), which

leaves unanswered the tantalizing question as to whether this is a genuine splitting

or merely a numerical failure in which case the two lines are merely one and the
same. There are indications from the bottom drag case that some sort of splitting

may be afoot: when we substitute t0 = 1 - A 0e- 4 and 01 -Ml (I + Ale - ;) into

the governing equations and neglect boundary conditions and consider only terms
0 (eC- ) we obtain a quartic equation for p with four roots instead of the two roots
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Figure 13:€0 (0 ) for A = -0.73 either side of the apparent splitting in figure 11(a):

(a) above and (b) below.

of 1 - Aju 2 
- u we had when we took e = 0. For A < 0 numerically we find that fur

moderately small negative A this quartic equation has two pairs of roots with the

elments of each pair being extremely close together.

In figures 12(a) and (b) much of the pole-like structure that was evident in

figures 9(a) and (b) is no longer present which suggests that e = 0 may have been

a singular limit; however as we have a relatively complete set of data for only one

non-zero value of e more work is needed on this aspect of the problem.

In figures 14 to 17 we show the function Oo ( ) for various values of A and with one

exception the curves all appear to be very similar to their e = 0 counterparts. Thc

no-slip solution shown for the upper branch (figure 14(a)) however has a peak that

is significantly reduced in size compared to figure 4(a). As it was this branch that

appeared to undergo the splitting in figure 11(a) this only heightens the intrigue.

4. A (Seemingly) Simple Model

As the behavior of the functions we have considered in earlier sections has been

at times fairly complex, in true Walsh Cottage tradition we have constructed a

simple model that exhibits much of the same structure. If we consider the time

independent potential vorticity equation for the bottom drag case in the boundary-
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Figure 14: 40 ( ) for e = 0.01, upper branch. (a) no-slip A = -0.5. (b) slip
A = -0.1.

layer and we make the boundary-layer approximation that Oyk = 0 so that C =

then we can write this equation in the form

J (VI, () + i0. = -r(, (57)

where C is the vorticity with the boundary conditions that u --- 0 and ¢ -- 'ko as

x -4 +o. If we integrate this equation from x to oo we obtain

1s (0, 1.) + 0 (0 - 0..) = -ro.. (58)

If we evaluate these two equations at z = 0 we obtain a closed set of equations for

the velocity and vorticity at the wall

vvy - #Ooo = -rv (59)

vC 1 + Ov = -r(. (60)

We will consider oply the first of these two equations and pose an expansion of the

form

b0 for aoy + aly 3 + a2y5 + ...... (61)

V ,0., roy + vIy 3 + V2y 5 . ...... (62)
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Figure 15: 0 ( ) for e = 0.01, middle branch. (a) no-slip A = -0.5. (b) slip
A = -0.1.

v - vo + 3iy 2 + 5v 2y4 + ...... (63)

and equate powers of y then we will obtain a series of equations for these coefficients

v,, given the a,. The first of these is at O(y)

v0 + rvo = a0  (64)

hence
Vr T ± 4ao (65)

= 2
r2

and we need a0  -L- for a solution to exist. This is equivalent to the condition of

A > -1 that we obtained for the bottom-drag case using boundary layer techniques.

At the next order 0(y') we obtain

v1(4vo + r) = a, (66)

and if we pick vo = - , which corresponds to a0o = -- 2- we see that in this case we

require a, = 0 and that v, is arbitrary. At O(y 5 ) we find that

v2(6vo + r) + 3v, = a2  (67)

thus

V2 = 6, 2a2 (68)
r r
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Figure 16: Oo () for e = 0.01, A = 2.0, middle branch. (a) no-slip boundaries. (b)

slip boundaries.

and at 0(y ' ) the corresponding equation is

V3 (SVO + r) + 8vUIv 2 =a 3  (9

with solution 480, 16a2v_ a3
V3 =- r - (70)

r2 r2  r

It can be seen that this is clearly not a unique solution as v, is arbitrary and this is

comparable to the free homogeneous solution that we found in the boundary-layer

equations for the bottom drag case.

It is also the case that this is not the only resonance present and this system

appears to have a countably infinite number of poles or resonances as v0 approaches

r - 0 from below. This is apparent from merely writing the solution down at

successive orders

v1 -- (71)
4v0 + r

which corre.sponds, to a resonance at vo = -t

a2 - 3v2
6v 0 + (72)
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Figure 17: o (0) for = 0.01, A = 0.5, bottom branch. (a) our possible solution for
no-slip boundaries. (b) slip boundaries.

which corresponds to a resonance at v = -

a3 - 8vv2 (73)

8v0 + r

which corresponds to a resonance at vo = - and

a 4 - 10vIv3 - 5v2 (74)

4 = lOv +(r

which corresponds to a resonance at vo " The general case is

a - F,=l (2m + 1)v,-mvm(

2(n + 1)vo + r

which corresponds to a resonance at vo = _Wf+i)' It would appear that these

resonances each have a non-uniqueness associated with the solution at that value of
v0 . What this appears to be telling us is that we require an expansion of a different

form for vo < 0. Just exactly what that expansion should be remains a mystery.
I
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Appendix : Numerical Methods

The semi-infinite interval (0, co) was mapped onto the finite interval (-1, 1)

using the algebraic transformation

-1

Z = a(76)
a + 1

where a is a stretching parameter. This transformation maps (0, 1) onto (-1,0)

and (, co) onto (0, 1). The parameter a was generally taken to be 0.1.

A spectral relaxation scheme was used for the calculations in the lateral friction

case; the scheme used was a modification of that used in I&R. [For an introduc-

tion to relaxation methods the reader is referred to Fox (1957).] The solution was

represented as a series of Chebyshev polynomials (Clenshaw, 1957)

00o(t) E C40.°), z (77)

in=0

01 ( ) Cn1 )T (z) (78)
n=O

with nonlinear terms calculated using the relation

Tn (z) T. (z) -- [T+n (Z) + TintnI (z)]. (79)

Generally N = 69 polynomials were used for both 0 and 01. Derivatives were

explicitly evaluated in recurrence form as outlined by Orszag & Gottlieb (1977).
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Boundary conditions were imposed by linear algebraic constraints on the unknown

coefficients which determine the last four terms in the expansion.

To converge the solution Newton's method was used by successively varying each

of the C,, and seeking a zero of the least square residues. This method was quite

robust but rather time consuming requiring slightly more than half an hour of cpu

time on a Microvax for each value of A and e.

As we noted in the main body of this report, there are regions of the parameter

range where the solutions have very little spectral decay since the solutions there

oscillate exponentially as --- oc and we concertina these oscillations onto a finite

interval. Further work might be better conducted using basis functions which are

orthogonal on (0, oo) itself in order to avoid compressing these oscillations [and thus

better resolve the behavior of the functions 0,, as --+ 0o] instead of transforming

this interval onto a finite interval as has been done here.
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A COUPLED THERROCLINE-ABYSSAL GENERAL GEOSTROPHIC MODEL

G.G. Sutyrin
P.P.Shfrshov' Institute of ooeanology, Mosow

ABSTRACT
The filtered two-layer model allowing order-one variation

of the upper layer depth is proposed. Various dynamioal
regimes are oonsidered. The oonservation of total energy and
potential enstrophy is analysed. The energy integral expres-
sion of energy that oontains only quadratio terms in the
general geostrophio regime is obtained. Coupling of upper
and lower layers motion is disoussed.

I INTRODTCTION

It was reoognized many years ago that eliminating the
ooourrenoe of high-frequenoy osoillation modes is an

important problem in numerioal prediotions of large soale

atmospherio and ooeanio phenomena. Replaoing the realistio

primitive-equations model, whioh permits undesirable

inertial gravity waves, by a simpler quasigeostrophio model

has been extensively used owing to the simplioity and

oonservation of analogues of both energy and enstrophy as in
the primitive equations (Pedlosky, 1979). But the
traditional quasigeostrophio equations apply only to slight

departures of thb density stratifioation from its avorage

distribution. A great deal of effort was direoted to develop

some intermediate models, whioh filter out the relatively

fast inertial gravity waves and still retain some degree of
physioal simplioity oompared to the primitive equations

(MoWilliams and Gent, 1980).
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Higher aoouraoy in respect to the Rossby number is

aohieved in the so-oalled balanoe equations (GenL and

MoWilliams, 1983 j). These are obtained by the deooinpoei-

tion of the velooity into solenoidal and potential- parts and

seem to be rather complicated for practical use. Another

approach to develop the general filtered model is allowing

order-one variation of the stratification while using the

lagrangian vertioal coordinate (Sutyrin, 1985). In this way

for a three-dimensional flow all variables are expresBed by

the geopotential as in the quasigeostrophio model.

In recent years a reduced gravity model has been used to

consider a number of geostrophio : .imes for large-scale

flows beyond the radius of deformation: the internediate

geostrophic (IG) regime (Charney and Flierl, 1981; Yanagata,

1982)9 the planetary geostrophio (PG) regime (Williamn and

Yamagata, 1984), the frontal geostrophio (FG) regime

(Chushman-Roisin, 1986). A unifioation and generalization

of these studies lead to the general geostrophio (GG) model

(Williams, 1985; Sutyrin and Yushina, 1986a, b; Cushman-

Roisin and Tang, 1989).

In the general geostrophio equation all variables are

expressed only by variation of the thickness of the layer

like in the quasigeostrophio one but the GG equation may not

rightly desoribe all conservation laws poBsesed by the

primitive equations. The addition of small, negligible but

carefully chosen terms might lead to either energy or

enstrophy conservation but not both simultaneously (Hukuda

and Yamagata, 1988). To guarantee that energy together with
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enstrophy be oonserved for the general geostrophio oase, at

least two variables should be oonsidered [e.g, oomponents of

ageostrophio velooity on the basis of Hamilton's prinoiple

(Salmon, 1985) or the Bernoulli funotion and vortioity

(Sutyrin, 1986)].
Unlike the QG regime the IG and GG numerioal simulations

display the essential differenoies in the formation,
evolution and interaotion of oyolones and antioyolones
(Matsuura and Yamagata, 1982; Williams and Yamagata, 1984;
Sutyrin and Yushina, 1986a, b, 1989). An important role of

frontal effeots in maintenanoe of elliptioal shape of an
isolated oyolone has been demonstrated by Hukuda and

Yamagata (1988). The saturation of the energy oasoade on the

IG soale and predominanoe of antioyolones has been obtained

in modeling of geostrophio turbulenoe (Oushman-Roisin and

Tang, 1989). In all these simulations only a single baro-

olinio mode was oonsidered without interaotion with others.

The ooupling of motions in the thermooline and in the

abyss may be essential in the ooean. It is of oonsiderable

interest to analyse various geostrophio regimes to

inoorporate vertioal modal ooupling. In partioular, a two-

layer version of a general geostrophio model is oonsidered

in this paper.

2. THE PRIMARY EQUATIONS AND PARAMETERS

The equations governing the upper and lower layers

motion are written as
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vit + (I + rotjv)(k x V) + vP± = o (2.1)

Hit + v.(HVi) = o, i = 1, 2 (2.2)

91Z =P, -P2 - 2/ +V2 (2.3)

Here V. is the depth-averaged velocity for the thermooline
(i = 1) and the abyss (i = 2), 1 is the Coriolis parameter,
K is the unit vertical vector, Pi = pi/po + V2/2, pl is the
disturbance of pressure, g' = g(P2 - P1 )/P 2 is the reduced

gravity, Hi is the layer thickness, Di is the mean thiokness

of each layer, Z = Hi - DI = D2 - H2 is the perturbation of

the depth of thermooline.
If the reference latitude is 6 on a planet of radius R

and rotating with angular speed Q, the beta-plane

approximation yields

7-7 + Y (2.4)
0 Y

where fO = 20sin6 and f = 2oosO/R.
We make a dimensionless set of basic equations by using

the scaling (U,, L, T) for velocities of each layer,

horizontal length and time scale. The soale for Pi is taken

to be I91 from the geostrophio relation. From, the

hydrostatic relation (2.3) the nondimentional displacement

= g'Z/1fo1j is introduced. Thus a dimensionless set

corresponding to (2.1)-(2.3) becomes
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W + wk x v, + vpi = 0, w = I + py + sirot~v4  (2.5)

Tnt + V'[(8, + E ll)Vi = 0 (2.6)

-TIt + V"(8262 /6 1 -6 2 ) 2 ] = 0 (2.7)

LIT -l - a- 2K + A:' K = V2/2 (2.8)

Si= Ui 'Ifo, 8 = gDi/l 2
o , P = 14/fo, = I/tIo

Here the nondimensional parameters Si and B. oharaoterize

the Rossby and Froude numbers for eaoh layer. The beta-

effeot yields P. The value of T, defining the time soale T

relative to the inertial period, and p = S,/E, should be

determined by the dyn mnios.

To obtain the law of energy oonservation we multiply (2.6)

by p, and p 2 while taking into aooount (2.5) and (2.7)

1;pl(pl t- IP2t - t + p J?2 t) + v,"(8 1 + ST)pIv 1] =

(81 + ")vIVP 1 = -,C(81 + 'p-P - eP2 - 6 2K, + 62 12 K2)K~t

I47P2 (P 2t - Pit + Elt- Ep2 K2t) + pg2V[(82 - sT)P 2V2 ] =

R2 (e2 -"T)v 2 vp2 = T(82 -Spl + pEp2 + s 2 1 -2jr 2p )p 2EK t
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Here 8 denotes 8 1 for the simplioity. Adding these equations

and integrating we obtain fjECZZy = oonst, where

E = I2 /2 + (a1 + 67))K 1 + (82 - ")ex' =

= (pl1 - Lp2 )2 /2 + 81K1 + 824%E - 2 (K1 - 112K 2 )2 /2 (2.9)

It should be noted that to order 82 the last expression

for energy oontains only quadratio terms while using p1 - p2
instead of 71. The oonservation of potential vortioity for

fluid oolumns in eaoh layer oan be rewritten in terms of the

potential thiokness anomaly q, as follows

'q±t + s6vivq, = 0 (2.10)

ql = 81/8 - (81/6 + 'f)/WI = (81 Y/E + 81 rotV1 - 71)/W

q2 = S2/s - - )/2 = (S2 PY/s + "s 2 rotV 2 + 7)/W2

Our purpose is to derive a set of equations for slowly

varying flows ( a 1) oonsidering various relations between

P, so ! , a1 and 82.

3. GENERAL FILTERED MODEL

At mid latitudes and for the open-ooean mesosoale range,

typioal soales are: f0 = 7,1 0- 5 -1 f 2.10 - 11 n- l 5- 1

I1
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L, = 70 Ions U1I 0.5 ms - 1  2 . ms - 1  9 210- 2 m-

L=O U=O. ,s U2 = 0.l 1  , g' = 2.10- ms-2 ,

D1 = 0.4 km,, D2 = 4 km, yielding

= 0.02, F= 0.1, g = 0.2, 81 =.0.3, 82 = 3

Thus the typioal relation between parameters are

10-2 4 P 4 6 4 g s 1 4 1 4a 2  (3.1)

From (2.11) we see that T C S, thus the nearly

geostrophio flow (s c 1) oan be oonsidered to be slowly

varying (T v 1) and from (2.5) the geostrophio velooity is

correot to lowest order in 6

vi akxvp, (3.2)

Substituting (3.2) into equations (2.8)and (2.10) while

dropping small terms of or less than the order 8162 gives

'q, t " J [ ( 8 +sP )(py + Vpl) + 62 (vpl) 2 /2 + FLp2 , p ]  |
(3.3)

q2 t J[PP82y + 4' 2asv 2 P2 + S)LP' P2 ]

Taking into aooount (3.1) and following Cushman-Roisin

and Tang, (1989) the time soale oan now be determined as the
biggest term in the rigt parts of (3.3). In this way we have
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Semax [81, 1 9 P 2 max[p, jJ] (3.4)

The abyssal motion is oonsidered to be generated mainly

by the variation of the thermooline thiokness, i.e., to be

stretohing dominated. Sinoe L < 81 is taken in (3.1), to

oonsider the self-oonsistent regimes in the two-layer system

we suppose

a 1 = Pr P 2  (3.5)

Another relations between parameters was analyzed by

Chassignet and Cushman-Roisin (1989). Dividing the equations

(3.3) by T we obtain

qlt = J[(1 + apl)(a + v2 p1 ) + a(vp)2/2 + 8p2 , p,] (3.6)

q2t= J~y + Ov2p2 + Opl, p2 ] (3.7)

CL = //S =Pa2 = (L/L) 5, = 2 D/203 Mr1/5

o = 1/8182 = (L/Lb)4, Lb = (g'2DID 2 )1/4/10

Here a replaoes 81 and a oharaoterizes the amplitude of

relative variation of the thermooline thiokness. With (3.5)

one oan see that the finite amplitude is reaohed if L - L1 c-

100 km. Coupling between the thermooline and abyBs is
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I

oharaoterized by 0; Lb is the soale of fastest growth of

baroolinioally unstable waves (Pedlosky, 1979).

By fixing two relations (3.5) between five parameters

(3.1) we have now three parameters 8, a, 0 in the equations

(3.6)-(3.7). Depending on the choice of the approximate form

of their left sides we oan obtain enstrophy or energy

oonserving variants of the general filtered two-layer model

as Hukuda and Yanagata (1988) did for the reduoed gravity

unified geostrophio equations. If

q, cm 8[(1 + apl)(By + V9 p1) + a(Vpl) 2 /2 + Op2 ] - p1  (3.8)

q2 c yO- 1+ V2p2 + pl - sOP2  (3.9)

then the equations (3.6)-(3.7) take the soaled form of (2.10)

qlt + J[p 1' q1] = o, q2t + J[Op2 9 q2 ] = 0 (3.10)

Here for eaoh layer an arbitrary funotion of q, is a

lagrangian invariant and the enstrophy fqid~zy is globally

oonserved. Dropping the a-terms in (3.8) which are of the

order F = as in the left side of (3.6) we obtain the two-

layer filtered model governed by the equations (3.6)-(3.9)

with the energy oonservation of the quadratic form

E = (P, - Oap2 )2 /2 + s(vpl )2/2 + OS(vp2 )2 /2 (3.11)



443

In this oase multiplying (3.6) by x and y and integrating

over the whole beta-plane we obtain the momentum balance

TfX(P 1 - OSP2t + SJ'(Pl + ap?/2) = 8fJp 2pl (3.12)

ffY(P1 - OSP2 = -Ofp2p1  (3.13)

Similiar relations was obtained by Flierl (1974) for a

lens-like eddy. Expressions (3.12)-(3.13) show that his

analysis of the Roseby wave field and vortex motion can be
extended to the more general oase.

4. COUPLED GEOSTROPHIC REGIME
Using the reduced gravity model, being obtained from

(3.6) and (3.8) for 0 = 0, seem to be quite problematic for
the mesosoale ooeanio eddies with the scale L w Lb (a 1).
In this oase a feedbaok between thermooline and abyssal

motions should be taken into aooount.

The difference with the traditional quasigeostrophio
model is described by the frontal effects oonneoted with
c-terms in the equation (3.6) for the upper layer (Cushman-
Roisin,1986). Dropping these terms (a = 0) leads to commonly
used two-layer quasigeostrophio equations.

Two kinds of coupling can be deduced from (3.6). The first
is desoribed by 83p2t; it is responsible for energy exchange
between layers. The seoond is deeoribed by OJ(p2, pl); it
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does not ohange the energy and might be termed adveotive.
In the quasigeostrophio regime when 8 y 0 1 1 they both are

essential and lead to the potential energy deoay and baro-

tropization in geostrophio turbulenoe (Rhines, 1979).

The most interesting (new) regime when CL - 0 - 1 oan be
oharaoterized as a ooupled frontal geostrophio one. In this

oase 8 P 1 and in the leading order approxination
we drop terms oonneoted with 8 to obtain from (3.6)-(3.9)

Pit = J[P1 F + p 2 ], = ( + p 1 )v2p + (Vpl)2/2 (4.1)

v2 Pe t = J[Y + v'pP2 , p 2 ] + JEF, pl] (4.2)

Here the available potential energy is oonserved on the
synoptio time soale Ts - L/I : fpjci4y = oonst.

The dispersive abyssal motions are exoited by J[F, pi ] in

(4.2) and oause only adveotion in the upper layer. Thud only

adveotive type of ooupling is oonsidered in this regime. Any
oiroular or reotilinear thermooline flows while being
oompensated, i.e. without motion in the abyss (p2 = 0), are
steady solutions of (4.1)-(4.2). Suoh oompensated solutions,
if baroolinioally stable, oould be oonsidered as attraotors
when the visoosity is small.

It shoud be noted that in the ooupled frontal geostrophio

regime the Froude number in the upper layer is small (8 1)
while the one in the lower layer is large (82 m S 1- ).
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The two-layer model with small Froude numbers in the both

layers has been recently analyzed by Kamenkovioh (1989). In
this case strong baroolinioally instability of an arbitrary
flow should be expeoted beoause of L b Lb (0 * 1) (Colin de
erdiere, 1986).

Acn moledzenta. In preparing of this work during the GFD
Summer Program conversations with Benoit Cushman-Roisin,

Glenn Flierl, Melvin Stern and George Veronis were very
helpful.
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Can Potential Vorticity Homogenize in Closed Gyres?

LuAnne Thompson

Abstract

A process model of the Gulf Stream recirculation is modified to show that the
solution that results from taking the inviscid limit of the quasi-geostrophic equations
is not necessarily a free inertial mode. The model is forced by anomalous potential
vorticity on the northern and western boundaries of a rectangular domain. When
the boundary is rotated Ly a positive angle with respect to the lines of constant
planetary potential vorticity, the solutions always becomes frictionally dominated
as the viscosity is reduced. The frictionally dominated solution on the northern
boundary asymptotes to a simple analytic form, analogous to the Munk balance, as
the viscosity is reduced.

I Introduction

Certain features of the general circulation of the ocean are dominated by inertial

rather than frictional effects, and both the planetary and the relative vorticity are

important. Dramatic example of this regime are western boundary currents that

appear in both ocean observations and in numerical models of large scale wind

driven ocean circulation. In the Atlantic ocean, there is recirculation of water in

two gyres north and south of the Gulf Stream. Thes-! gyres have limited meridianal

extent and their circulation results in enhanced Gulf Stream transport. The wind

driven portion of the North Atlantic circulation is believed to have a transport of

about 30x10 6 m3 /s, while the maximum transport of the Gulf Stream is ahnost

150x10 6m 3 /s (Richardson, 1985). This recirculation can appear where there is no

local wind forcing. Cessi et al. (1987) (herafter CIY) demonstrated this by forcing

a homogeneous ocean with a wind stress curl that is zero above a certain latitude.

The solution shows a recirculation gyre in the northwest corner of the box where the

wind stress curl is zero. In the solution, the potential vorticity is uniform within the

recirculation gyre. Within this gyre the relative vorticity is important, and inertial

effects dominate. Oceanographers are not yet able to measure the relative sizes of

relative and planetary vorticity within the Gulf Stream recirculation, but it is clear

i
I
I



449

that both could be important there.

Several analytic models have been used to explore the dynamics of the recircu-

lation. In order to make analytical progress, friction is assumed to be unimportant

in the dynamics of this feature (CIY, Marshall and Nurser, 1986). The assumption

behind the neglect of friction is that the solution will be a free inertial mode of

the system when the viscosity is reduced. We will show that this assumption does

not hold when the geometry of the recirculation model of CIY is varied by a small

amount. The work that follows suggests that one cannot easily extend inviscid

solutions of two-dimensional problems to more general geometries and forcings.

The model of the recirculation that is considered is the one described in CFY

and Ierley and Young (1988) (hereafter IY). In this model, the quasi-geostrophic

potential vorticity equation is driven by anomalous potential vorticity applied at the

boundary. The steady quasi-geostrophic potential vorticity equation is then solved

numerically in the presence of lateral diffusivity. The dynamics of the recirculation

are isolated from the wind driven part of the circulation in this process model. No

wind stress curl is applied for the results given below. The anomolously low values

of potential vorticity that are applied in the northwest corner model the effect

of northward advection of low values of potential vorticity of southern origin by

the Gulf Stream, or alternatively the generation of low values of potential vorticity

locally by buoyancy effects. The relationship between the potential vorticity forcing

and the dynamics of the gyre as a whole will not be discussed here, but the relative

simplicity of the model allows a thorough exploration of the behavior of the system

as the diffusivity is reduced. The advantages of this model are its time independence

and confined spatial extent, which make many realizations of the solution affordable;

unlike time dependent models of the ocean circulation that exhibit qualitatively

similar behavior.

As motivated by observations and numerical experiments, the recirculation gyre

is assumed to be dominated by inertial effects in its interior. Both CIY and Marshall

and Nurser(1986) suggest that this gyre is a free intertial mode of the basin. As

the diffusivity is reduced, the local Reynold's number for both of these solutions

will go to infinity. In particular the CIY solution is one with uniform potential

vorticity. Constant potential vorticity occurs within closed streamlines which never
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pass through frictional boundary layers (Rhines and Young, 1982). This result holds

as the viscosity, K, is reduced, and is motivated by an application of the Prandtl-

Bachelor theorem that tracers in two-dimensional flow will become constant within

closed streamlines. In contrast, when every closed streamline passes through a

frictional boundary layer, friction will be dominant everywhere. In fact, as r. is

reduced this frictional regime can be realized instead of a free inertial mode.

In IY, anomalous potential vorticity is applied in the northwest corner of a box

in order to model the confined longitudinal extent of the Gulf Stream recirculation.

The resulting gyre is of nearly constant potential vorticity, but the strength of the I
circulation diminishes as dissipation is decreased. The Reynolds number does tenl

to infinity as r. is reduced, and a free inertial mode results. In this paper, the

geometry of IY is slightly altered by rotating the boundary with respect to the lines

of constant planetary potential vorticity by an angle 0, but the forcing is kept at

the IY value. The problem now has two free parameters, 0, the angle of the tilt,

and r., the dimensional viscosity, as in IY. This study will show that when 0 > 0 0 ,

the free inertial mode is no longer realized as the inviscid limit of the equations,

but instead, a frictionally dominated solution results.

2 The Model

The quasi-geostrophic formulation for a one layer ocean is used. The governing

equations are

J(0, q) = PcV 2 q (1)

where

= (u,V)
and

qa= + fycoso + #zsino .

Here = V 2¢. The boundary conditions are

where s is the arclength around a rectangular box. Also, b = 0 there.
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The parameterization of friction on the scale of interest as Laplacian friction is

motivated by Rhines and Young (1982) and has been used extensively in oceanogra-

phy. This form of friction also allows analogies with more general two-dimensional

fluid mechanics problems.

The angle 0 measures the tilt of the planetary vorticity contours relative to

the boundary of the domain where the forcing is applied. This simple change in

the recirculation model of IY mimics the Gulf Stream exiting the coast with a tra-

jectory not aligned with a plantetary potential vorticity contour. This situation

can be realized in a more general wind driven time dependent numerical model by

tilting the zero wind stress curl line with respect to a lattitude circle (P. B. Rhinei;

personal communication). When 0 is positive, the northern boundary is rotated

counter-clockwise by an angle 0. Therefore, some planetary potential vorticity con-

tours originating at the eastern boundary and terminate at the northern boundary.

On the other hand, when 0 is negative, some planetary potential vorticity con-

tours originating at the northern boundary and terminate at the western boundary

(Figure 1).

,-

Figure 1: Schematic of planetary potential vorticity lines with respect to the bound-
aries of the domain. The angles of rotation from left to right are 0 < 0° , 0 = 0°

and 0 > 00

We consider steady solutions to this problem in a rectangular domain -L <

y < L and -L/lc < z < L/c- where a is the horizontal aspect ratio of the basin. On

the sides of the basin, the boundary conditions are V = 0 and a prescribed relative



I

452 1
vorticity distribution, independent of 0 given by: i

y = L f = 3L [tanh(lOa/L) - 1] /2

z= -La = OL[tanh{(y+L)/L}/tanh2] -/L-y 1
otherwise C = 0.

This problem is solved numerically by Newton's iteration in a program developed by I
Glenn Ierley. In IY a = 0.3, and 0 =0 ° . The structure of the boundary condition

on C is shown in Figure 2.

qb

Figure 2: A perspective view of C + fly cos 0 + fix sin 0 for 0 =00 . Except in the
northwest corner, the potential vorticity is the planetary potential vorticity, and b
is constant on the first half of the northern boundary, and then falls to zero for the
second half. (Figure taken from IY).

The introduction of anomalous relative vorticity (" = -u, < 0) at the northern

boundary drives a current towards the east there. This vorticity is advected east-

ward and diffused southward into the interior. At some point after the forcing goes

to zero, the current turns into the interior in order to return all of the fluid to the

western boundary, closing the gyre. To consider the relative sizes of advection and
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diffusion, a local Reynolds number is defined as

R U/A
IC/W2'

where U is the eastward velocity scale of the gyre, and A and w are the length

scales of the gyre in the x and y directions respectively.

IY show that when 0 = 0° , w oc Kl/6, 6 0C K1/s and 0b oc K1/2 , where 6 is
the frictional boundary layer scale. Here, they assume that A is independent of K.

Therefore R oc i/s. It is clear that A depends on K (IY, their Figure 3), but a

consistent scaling for its dependence has yet to be found. To review their scaling,

the size of the terms in (1) are examined. In the interior, potential vorticity Is

uniform and a. < al, so that u, must balance fy, or U = /w 2 . In the frictional

sub-layer near the northern boundary, -u. = Cb or U = 6bb must hold. Since z

variations are negligible, in the boundary layer diffusion of Ovy in the y direction

is balanced by advection in the z direction, so Ca/L3 = K//36, since the length

of the forcing region is L/a. Thus 6 = (ivL/a) 1/ 3 . Since the velocity must be

continuous from the boundary layer to the interior, then the scale for w is given by

w = (KL/cb)

3 The Numerical Solutions

In order to infer something about the dynamics of the ocean using the results of

IY, it is necessary to show that changes in the boundary conditions or the geometry

do not greatly effect these results. IY show that forcing the gyre from the center of

the northern boundary produces a similar gyre as described above. Here, a small

change in geometry is shown to drastically effect the inviscid limit of this problem.

A series of numerical solution to (1) for 0 = 00 , 50 , 100 , and 450 are calculated

(see Figures 3-7 for the following discussion). Since these experiments have an aspect

ratio a =1, a detailed comparison to IY cannot be made. For all of the solutions

there is a closed recirculating gyre in the northwest corner. As r. decreases, or

as 0 increases the gyre becomes narrower in the y direction, and the transport

decreases. For the solutions found, for 0 =0 ° , 50 , and 100 , the gyre elongates in

the z direction as ic decreases. For 0 =450 , the gyre remaines the same length.

Only for 0 = 00 does the solution become more nonlinear as K is reduced, for the

other angles, as K is reduced, the solution actually becomes viscously dominated.
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Figure 3: Contours of stream function in units of /3L- and potential vorticity in
units of 6IL for the upper half of the box for e = 00 . The fluid in the rest of the
box is essentially at rest. From top to bottom is tP for r. = 0.001, q for 1C = 0.001,
tfor r. = 0.0001, and q for iv = 0.0001.
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The high viscosity solutions for all of the angles are qualitatively similar to the

0 = 00 runs. However, as r. is decreased, with 0 > 00 the gyre becomes more asym- I
metric. For 0 =5 ° and 100 , the point where the stream function is maximum moves

further to the east, whereas for 0 = 450 , the point where the stream function is I
maximum remains close to the end of the forcing region and the gyre turns Just after

the forcing stops. All these solutions are in contrast to the 9 = 0 ° solutions where I
the gyre becomes symmetric about z = 0. The slope of the outermost streamline

is negative initially for the larger values of viscosity and 0 > 00 . However, as the I
viscosity is decreased, the streamlines become parallel to the northern boundary.

The gyre becomes independent of x between the western boundary and the end of

the forcing region, particularly for the solutions found for 9 = 450 . For the most 1
inviscid solutions for 9 =10 ° , and 450 (Figure 7), the streamlines and the lines of

constant potential vorticity cross throughout the gyre, an indication that diffusion I
is important throughout the gyre.

4 Boundary Layer Dynamics and the Breakdown of the Inviscid Solu- j
tion

The above behavior can be explained in terms of changes in the boundary layer

dynamics when 9 > 0° . In fact, the boundary layer scaling suggests that, in the

inviscid limit of the frictional problem posed above, if 9 is a small fixed angle, and I
the viscosity is reduced, the solutions will approach a viscously duminated solution

instead of a free inertial mode of the inviscid equations.

When 0 > 00 , some of the potential vorticity contours which orignate at

the eastern bounary terminate at the northern boundary. The northern boundary

becomes an effective extension of the western boundary, along which the planetary j
potential vorticity is increasing. On the northern boundary, a jet is set up as in IY,

however now fluid parcels traveling along the boundary must cross lines of constant

planetary potential vorticity. If the fluid is to conserve its potential vorticity, then

the relative vortrcity must decrease as the fluid moves along the boundary. This I
change results in an increased shear ( = -u.). There are two possible adjustments.

First, the velocity can increase both in the interior and in the frictional boundary

layer, increasing the shear in the interior while keeping the width of the gyre fixed.

I
I
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Figure 7: Contours of stream function in units of 0VL and potential vorticity in
units of /3L. Only the upper quarter of the box is presented because the fluid in the
rest of the box is essentially at rest. From top to bottom is 0b, q for KIc/L3 = 5x105'
and e = 100 , tP, q for tc/1,6L - 3x10-' and 0 = 450
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In this case the frictional boundary layer scale has to increase to keep the shear at

the boundary equal to the boundary value, resulting in less of a scale separation

between the interior and the boundary layer. Alternatively, the width of the gyre

can decrease, increasing the shear in the interior, once again resulting in an increased

influence of friction.

The balance of terms in (1) gives an indication of how a solution of homogeneous

potential vorticity breaks down as viscosity is decreased for a fixed angle of rotation.

At the northern wall, as for IY, U = b6 where 6 is the frictional boundary layer

width and 6 c r./-. If the interior has constant potential vorticity, then the relative

vorticity must balance gradients in planetary vorticity either along or across the

gyre. That is

U/w = maz(0sin0 or PcosOw). (2)

where U/w is the scale for " in the interior of the homogenized gyre. Since the

velocity must be continuous from the boundary layer to the interior of the gyre, the

width scale of the gyre will be given by (2) and will be the smaller of
'b 6 ) 1/2(3
Cos 0)3

and
b6

(4)
AOsin 0

In general 6 oc ./s1 (as will be discussed in Section 5), so that for fixed angle as r. is

decreased, (4) becomes the width of the gyre instead of the IY result which is given

by (3). This balance holds no matter how small the fixed angle 0 is. When the angle

is small (for example 50 ), (4) suggests that the width of the gyre is much larger

than the frictional boundary layer, which implies that the gyre may be inertially

dominated. To see if the inviscid solution is an inertial mode, the Reynolds number

must be considered. At fixed angle, if the limit as r. goes to zero is taken, and an

inviscid solution is reached, and R is infinite. In this case we find that

-\A/3r.,63 sin3 0

Now, A must be at least as big as L/a, the length of the forcing region, so that

at most, R is independent of ic, and does not go to infinity as the inviscid limit is
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taken. Therefore, an inviscid solution will not be reached at fixed angle as the limit

as re goes to zero is taken. Since the forcing is independent of x for a region long

compared with the boundary layer scale, we can find an analytic solution for 0 as

ic is reduced at fixed 0.

5 The Frictionally Dominated Solution

The inviscid limit of this problem when the angle of rotation 0 > 0* is a viscously

dominated solution. In order to see what the solution might look like, we consider

the balance of terms in the viscous boundary layer, and decide which terms are

important. In the boundary layer the dominant terms in the vorticity equation (I,)

are
J(O, ¢V),) +,8 cos 00. - 1 sin 0y = rI.COy (5)

The length scale in the y direction is given by 6, the frictional boundary layer

thickness, the length scale in the x direction is L/a, the length of the forcing, and 0
scales as Vb62 as required by the boundary conditions on the relative vorticity. The

size of the each term in (4) is given by

J(O, Oy) + 4 cos8b - 4 sin 00, = rVyyyy
L L 62sinO0b6

We now scale everything by the size of the viscous term to get
6s1' [ 6cxcosO in]1
bs) a baC s0 sins = 1

~L

where 6 = fL. The viscous term is expected to be important everywhere in the

viscous boundary layer near the northern wall. The second term, Ov the advection

of planetary vorticity in the north-south direction, is always subdominant as the

viscosity is reduced. If this term balances the friction, this would correspond to a

linear Munk balance at the northern wall of the box. It is important to note that

all of this discussion concerns flow that is far from the linear regime, because the

size of the forcing is/OL, which is larger even than changes in the planetary vorticity

across the gyre. Therefore the first and the third terms balance the frictional term

in the boundary layer when 0 > 0* . Particularly when the the angle is large, the

character of the gyre is x independent south of the forced region, and the first term



462

vanishes identically, so the third term balances the friction by itself. This balance

results in a simple solution which satisfies the non-linear balance throughout the

interior of the gyre south of the forcing region. This solution is analogous to the

Munk western boundary layer solution, where linear dynamics apply, however, here

the solution satisfies the nonlinear equation (5). The boundary conditions for the

solution here are 0., = S and i = 0 at y = L. Thus

,- 2 b6 .3e(V-L)/26 sin{(y - L)v/3/2b} (7)

where 1

6= sin O

This soluti.-n is valid because b is independent of x in a large region. If the forcing

function varied in x then the first and the third terms would combine to balance

friction when e > 0' . This boundary layer balance reduces smoothly to the bound-

ary layer balance of IY as 0 goes to zero. For the forcing chosen here, even for small

angles, the solutions become quite independent of x when ic is small enough south

of the forcing region (Figure 7). This suggests that for this choice of forcing, the

solution will always approach (7) as long as 8 > 00 .Quantitatively (7) agrees quite

well with the numerical solution for 4 when compared with a cut across the gyre

south of the forcing (Figure 8). The correspondence improves as 0 increases, or as

i i decreased.

As a summary of the numerical solutions used in this study, the maximum

streamfunction versus rc on a log log scale is of interest (Figure 9). The slope of

the line gires a where loma oc K a . Also shown is the mn-Lximum streamfunction for

(7) on the same scale for each angle of rotation used. Although the transition to

the solution given by (7) occurs at much lower viscosity for smaller angles, all the

solutions approach it in a quantitative comparison. This behavior confirms that

even for small angles of rotation, the entire solution is dominated by friction. In

fact, as K is reduced, the agreement between between the numerical and analytic

solutions improves, so that the solutions become more viscously dominated as rC is

reduced.

If the set of experiments were redone for a forcing function that depended on

x, the comparison to (7) would no longer hold, but the maximum streamfunction
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northern boundary is independent of x, then the solution approaches the simple

solution given by (7) and is dominated by friction everywhere. The change in

behavior results when the planetary potential vorticity lines are tilted with respect

to the boundary where the forcing is applied. The northern boundary becomes an

extended western boundary, and variations in planetary potential vorticity along

the boundary dominate the dynamics of the recirculation gyre. The fact that the

potential vorticity forcing is applied along a meridian is an important aspect of the

0 = 00 case which is vital to the conclusions of IY.

The boundary layer scalings suggested above, and the predicted size of the

transport in the gyre, no longer hold when the gyre reaches the eastern boundary.

The turning region has not been discussed, but the gyre turns when it has dif-

fused enough relative vorticity to allow the velocity to approach a stagnation point.

However, when the gyre reaches the eastern boundary, it can support a pressure

gradient which allows the gyre to turn back to the west with less of the vorticity

diffused into the interior and more carried back into the interior, breaking the fric-

tional domination in the interior and allowing a free inertial mode to set up ill at

least part of the gyre. The lowest viscosity solution found for 9 = 100 confl-ms this

assertion. In this solution, the gyre has reached the eastern boundary (Figure 10)

and the maximum streamfunction is only slightly smaller than the one found with

larger ic, where the gyre has not felt the influence of the eastern boundary (Figure

7). The potential vorticity distribution suggests that if the viscosity were reduced

even further, the gyre in the northeast corner would develop constant potential vor-

ticity. This result is consistent with CIY where the gyre is forced on the western,

northern and eastern boundaries, the strength of the gyre is influenced only by the

strength of the forcing, and the resulting solution is independent of the value of the

viscosity.

If on the other hand the gyre is rotated in the opposite direction, the northern

boundary now becomes an extension of the eastern boundary. By the argument

given above, the northern boundary is able to support a pressure gradient and the

potential vorticity will be uniform at an even larger ic than for 0 = 0* . Since fluid

parcels along the boundary are moving to lower values of potential vorticity, the

shear decreases. Reversing the argument given above, the separation between the 1
I
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would still scale as i.2/ 3 and the slope of the lines in (Figure 9) would again approach

2/3, instead of the IY result of 1/2 (IY their Figure 7). Because the forcing function

here iss simple, a quantitative comparison between the known frictionally dominated

solution and the numerical results is possible.

1o-0

10-1

. 1o

10. I0"1 10 -  10 "1 10 - 1

Figure 9: Maximum stream function (3,, 3/IL 3 ) versus r/f3L3 for e = 0* 5* , 100,
and 450 . The solid lines are the numerical solutions, and the dashed lines are the
solution given by (7). Notice that for 0 >0 ° , , approaches that given by (7).
The gyre feels the influence of the eastern boundary at the last points for 8 =0° and
100 , which is why the slope of the numerical solutions changed there. There the

scalings no longer hold and the maximum stream function becomes independent of
K.

6 Summary and Discussion

An oceanographic problem has been explored where when one parameter, the

angle of rotation 0, is changed, even by a small amount, the inviscid limit of solution

is no longer an inviscid solution of the equations. In fact, if the forcing on the
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Figure 11: Stream function and potential vorticity contoured for the entire box for

i= .001 and e =450
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boundary layer scale and the interior scale is increased. A solution was found that

shows an extreme example of this for a moderate values of ic and the solution has

potential vorticity that is nearly constant in a very large region (Figure 11).

As with any model of this sort, the connection with oceanographic observations

is tenuous, however, the results of this study suggest that since the Gulf Stream

exits the coast at a positive angle with respect to meridians, the southern recircu-

lation gyre would be weaker than what one would expect from a symmetric wind

driven model. In turn, the northern recirculation gyre would be expected to be

stronger. The results of this study also suggest that a strong recirculation depends

crucially on the fact that the Gulf Stream separates from the coast and begin to

travel approximately along lines of constant planetary potential vorticity. In the

extreme case of 0 =90* , the forcing would be applied on the western boundary, the

frictional regime would dominate, and a very weak recirculating gyre would result.

The literature is fairly limited in this regard, so time will tell if this conclusion is

consistent with observations.
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EVOLUTION OF THE NEAR-WALL JET. I
by Irene G. Yushina.

Institute of oceanology , Acad. Sci.USSR,23 Krasikova
Street,117218 ,Moscow,USSR

ABSTRACT

The behavior of the inflow near the wall is studied in.
the framework of a two-dimensional model 'with the
resolution of the boundary layer near a slippery and
no-slip wall. It is shown that the evolution of the inflow
is due to the presence of the region of negative vorticity
(boundary layer) near the wall.

I. Introduction

An important phase of turbulence production in the
flow past a wall occurs with the intermittent inflexional
instability of the streamwise current. Although fully
developed turbulent flows must be regarded as stable in
tha mean, the classical theory of laminar instability
captures a key process which occurs intermittently in
space-time. In the flow of a homogeneous fluid past a wall
patches of inflexionally unstable flow associated with
large Reynolds stress develop as a result of local
spanwise circulations . It appears that the ever-present
large-amplitude disturbances in fully developed laboratory
or geophysical flow evolve into locally unstable patches
in which one or more eddies develop, and this process is
addressed herein. (14.E.Stern,1989)

A barotropic jet emerging from a point source in a
rotating fluid is deflected to the right ( northern
hemishere) and starts to accumulate in an anticyclonic
vortex. This vortex gives rise to a cyclonic neighbor,
and the- dipole (modon) then propagates away from tile
source in a circular path (Flierl etal, 1983). It is
suggested that the modon model captures certain essential
features of geophysical eddies. This is based on a
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theorem, that any slowly varying and isolated disturbance
on the beta plane must have zero net relative angular
momentum, so that the dipole is the simplest dynamically
consistent representation of such a disturbance.

When a laminar jet flows into a resting fluid of the
same density the vorticity front form. M.E.Stern and
L.J.Pratt studied this process and its consequences in an
inviscid two-dimensional model by the method of contour
dynamics. They showed that for large amplitudes wave-
breaking and engulfment of irrotational fluid occures, and
for smaller amplitudes a lee-wave develops behind the
leading edge of the shear intrusion, and each wavelet
tends to equilibrate in amplitude and preserve its form
(Stern and Pratt,1985).

H1.E.Stern considered the temporal evolution of a slow
downstream decrease in the velocity of a coastal current
contained in the light upper layer of the ocean in the
framwork of quasi-geostrophic model and showed that the
formation of plume near the nose of the vorticity front is
responsible for some of cold water plumes which extend to
large distances from the coast of California (M.E.Stern,
1936).

In the laboratory experiments J.A.Whitehead studied
the behavior of the isolated eddies and showed that the
eddy pair can be made from a barotropic current, vertical
streaked eddies can be made by density currents over a
sloping bottom (J.A.Whitehead,1989).

The behavior of vortex pair and the conditions of its
formation in the laboratory experiment was studied by
G.J.F.Van Heijst and J.B.Flor (1989), J.M.Nguyen Duc and
J.Sommeria (1988), S.I.Voropaev (1989). All these studies
are connnected with a free jet and with formation of
vortex pairs and with the interaction between two
symmetric couples.

The results of numerical simulations presented here
refer to behavior of the jet near the wall with the
resolution of the boundary layer. It appears that the
existance of the region'of the negative vorticity near the
wall cause the formation of the big vortex in the nose
of the jet and the propagation of the jet along the wall
ceases.
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II. Formulation of the problem.

Consider a two-dimensional model of inflow into the
rectangular domain A < a < B, 0 < b < Y. Let the half
width of inflow be L and let the characteristic flow
velocity be '7.

Let us introduce the dimensionless variables

x = a/L , y = b/i , t =Z'i/j , (.)

where a, b, V are coordinates and time, x, y, t are"
nondimensional coordinates and time. The constants with
tildes are dimensional and the constants A, B, Y, L, V are
non-dimensional. In the experiments with a jet near the
wall A = -10, B = s, Y = 10, L = 1, V = I. s is thickness
of boundary layer. In the experiments with a free jet
A = -5, B = 5, Y = 10, L = 1, V = 0- in experiment 3 and
V = I in experiment 4. In the experiments with a steady
modon A = -10, B = 0, Y = 10. The evolution equation has
the form

* )x,8A) (2a)

4 9 (2b)

where LJ is the nondimensional vorticity, y- is to. stream
function, c is the viscosity. L is the horizontal
Laplz,.cian operator Z = ..

Although several different initial and boundary conditions
were used, in most of the numerical experiments presented
here the Neumann boundary condition was used on the
outflow boundaries:

-0 (3)

at x 1(A.,0 4 y ,4 Y) and at y = Y ,(A 4( x .4 B) , slip
or no-slip boundary conditions at x =B , (0 4 y 4 Y) and
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I
at y.= 0 , (A & x < B) except at the region of the inflow.

In most experiments the conditions P = 0 and
@ /a- / 0 were used for the slip boundary and the

conditions q = const and IV/n= 0 for the no-slip
boundary, except at the region of inflow, where co and y
remaind constant in time at each point of inflow . In one
experiment the no-slip condition was enforced at the
boundary x = A , (0 4 y 4 Y), but the result o£ that
calculation was similar to the experiments with the
Neumann boundary condition. This similarity is because the
duration of the calculation was less than the time for
boundary effects to be significant.

For the initial condition the vorticity is zero
throughout the domain and the stream function, as
determined by the equation 4) = 1 V describes the
potential flow in the interior (Fig.l).

The vorticity at the region of inflow was specified
to be

W-- 6/ .b -L~Xeo
CO z- -2 e/S ! , (4)

This form of the vorticity gives the velocity profile

- 2 (zCL/Z) 3 _. /, / 2 ) -Z3 ' 4

(5)

with its maximum value usually equal to one at x = 0 , as
shown in Fig.2. Note that if s2 is 1/3 there is a smnrlt:
profile of vorticity because

0,lr o C"7 o- A'y*i

Equation (2b) was solved by the iteration method of
overrelaxation. The relaxation parameter at the first time
step was,.1i97 and about 300 iterations were necessary to
achieve- an accuracy of 5xl0" in the stream function.
Subsequently the relaxation parameter diminished to 1.3
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and the number o'f iterations essentially decreased and
remained in the range from 7 to 20 slowly increasing in
time. The calculations were made for a region of 50 x 50
gridpoints, the grid resolution was dx = dy = 0.2 or
dx = dy = 0.1. The finite-difference representation of
(2a) was a centered second-order formula in both space and
time. In particular, the nonlinear Jacobian operations
were calculated by the spatially conservative formula of
Arakawa (Arakawa, 1966). The nondimensional viscosity
coefficient was 6 = 0.01 or 6 = 0.005.

We performed two experiments for the verification of
the numerical calculations, one with numerical dissipation
only ( E = 0 ) and the second with explicit viscosity
( = 0.005).
For the case of line vortices, originally analysed by
Lamb (Lamb,1932), the recirculation cell of the vortex
takes the shape of an oval that encloses both vortices;
the resulting motion is steady.

In theoretically describing the structure of the
vortex for verification of the numerical calculations, it I
is possible to assume two distributions of vorticity
concentrated in two line vortices symmetrically located
about the centerline of the vortex pair. It is possible to I
retain the conditions for steady motion of the vortex pair

in the case when the vorticity is distributed throughout
the recirculation cell assuming that the relation

4O = &u

is valid throughout the domain of non-zero vorticity
(Batchelor, 1967). The governing equation in terms of I
the stream function and the constant k takes the form

For this form of p the solution is a Bessel
function of the first order:

Ain



475

I
In this solution the circle r = R bounds the

reci'rculation cell (Homa etal.,1988). If we take

60 =(0 1- , (9)

as the initial condition for the numerical experiment we
can expect that the vortex pair motion will be steady and
the decrease of the amplitude of vortices will depend on
the viscosity only. The estimation of the time of the
decrease of the amplitude of the vortex pair in e folding
times is T = L /(2E). In the case when L is equal to 1
and & = 0.005 the estimation of the time is T = 100. The
initial field of vorticity given by (9) for the numerical
experiment 1 with periodic boundary conditions at y = 0
(A < x s B) and at y = Y , (A 4 x \< B) , and slip
boundary at x = B , (0 4 y 4 Y) and the centerline of
vortex pair is at that boundary is shown in Fig.3, the

profile of the initial vorticity is shown in Fig.4. The
decrease of the initial amplitude of the vortex by a
factor of e occurs at T=65.6. The location of the center
of vcrtex changes from y = 2.6 to y = 9, that corresponds
to the speed of vortex of about 0.09 (note that the
amplitude of the vortex is 0.58) Since the boundary
conditions correspond to the unbounded fluid at rest at
infinity, the following integrals are conserved in the
absence of viscosity:

When F'=0 as in our numerical experiment, E and P
are equal respectively to the energy and enstrophy of the
flow. (In the numerical experiment which is described
above we must remember that there is an image outside the
domain -with the vortex with the opposite sign of the
vorticitk and these two vortices are a vortex pair.)

All these integrals are conserved when 6 = 0 and
the decrease of the integials is only due to the implicit
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viscosity. in Fig.6 the behavior of these integrals is
shown for the experiment 1 with irplicit viscosity only.
The profiles of energy and enstrophy coincide with the
line y = 1 and the profile of the maxinum of the amplitude
is changed chaotically from 0.93 to 1.03. This behavior
is due to the grid-representation of the vorticity field.
So, fcr the times of the simulation of about 100 the
influence of the implici: viscosity is negligible for such
a schene. in any case it is much smaller then the explicit
viscosity in cur experiments. Each gridpoint in the
numerical experiment 2 is shown in Fig.5 using its stream
function Y and vorticity by as coordinates. The points
collapse approximately on a curve with two branches one of
which is on the W/- axis and corresponds to the irrotatial
flow outside the couple.

This behavior corresponds to that expected for the
steady solution of the Euler equations. This result is
thus a direct proof that we have a stationary state and
the structure function 0 = / (IV) is linear as in Lamb's
vortex pair (Lamb,1932).

III. Free jet.

The numerical experiments of a free jet with
different (0.01 and 0.005) and the different initial
vorticity profiles are shown in Fig.7-11. The initial
vorticity profile in experiment 3 with d = 0.01 is a
cosine function in the region of inflow. The profiles
of U , y and bQ are shown in Fig.7 for this case. In this
experiment the maximum velocity of the flow equals Ai so
the nose of the jet is going faster than in the
experiments with the maximum velocity equal to 1, and
travels a distance of about 6L during the time T = 5
(Fig.8). The result of numerical experiment 4 of the
inflow with the linear initial vorticity profile as in
Fig.7 is, shown in Fig.9. Here the maximum velocity is
equal tQ;I, ao the nose of the jet propagates only to the
distance- of 5L duzing the time T = 8. In Fig.10 the
isolines of the vorticity and of the stream function for
experiment 4 are shcwn at T=24 and Fig.ll exhibits the
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trajectories of the particles which were at the region
of inflow at the time T - 0 . All these particles were
initially at the nose of the jet and their trajectories
are analogues to the trajectories of the particles in the
laboratory experiment by Flierl etal.,1983.

IV. Inflow near a no-slip wall.

The numerical experiments 5-7 were made with the
outflow boundary conditions at x - A , (0 4 y Y) and
y = Y, (A A x 4 B). The boundary condition at x - B ,
(0 4 y 4 Y) was no-slip; i.e. at this boundary W = const,
say 0 and c1/c h = 0. The profile of the vorticity in the
region of inflow was as in Fig.2 with s = 1.0.6 and 0.4
respectively. In Fig.12-14 the isolines of vorticity are
shown for the experiments 5.6 and 7 at times T=24,32 and
40. One can see that there is no qualitative difference
between the developments of the nose of the leading edge
of the modons in these experiments: the difference in time
is due to the thickness of the region of negative
vorticity near the wall. It seems that when s becon.es
smaller, the speed of advection is smaller too; that's why
the propagation of the nose of negative vorticity is
similar in Fig.12-14 for different times. In Fig.15-17
the isolines of the stream function for the experiments
5-7 are shown for the times T = 24.32 and 40 respectively.
The differences are small in these figures. So we can
conclude that in this range of s there is no qualitative
difference in the evolution of the jet near the no-slip
wall. It propagates a distance of about 5L and separates.
The nose of the jet appears to follow isolines of the
stream function, i.e. it propagates in accodance with the
potential flow. In Fig. 18 - 20 the trajectories of the
particles, initially located in the region of inflow are
shown with the isolines of the initial stream function
(isolines of potential flow). Note that the decrease of
the coefficient .of the -viscosity from 0.01 to 0.005
doesn't influence the behavior of the jet. That's why all
experiments which follow were made with F_ = 0.005.

So, in these numerical experiments with a two-
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I
dimensional model when there is a region of negative
vorticity near the wall we could not make a jet to go
along the wall.

V. Inflow near a slippery wall.

In the numerical experiments 8 and 9 the fluid was
allowed to slip along the boundary at x = B , (0 < y < Y)
i.e. '' = 0 and 'W/o&= 0. The profile of vorticity in
the region of inflow is shown in Fig.21 and it is defined
by c -6 -L2L,/2 1. 5"L' -L ) 4 c0

- 9

and the velocity profile is
V':-2 (r.+ /23+ -( +Z/"2),L 2 9L 3, -Z z o

s equals to 1 in these experiments.
The only difference between experiments 8 and 9 is

that the boundary condition at x = A , (0 4 y < Y) is
outflow (Neumann condition) in the experiment 8 and
no-slip boundary in the experiment 9. The potential flow
at T = 0 for the experiment 9 is shown in Fig.22. The
numerical simulations showed that there in no influence uo
the boundary x = A , (0 4 y , Y) on the behavior of jet

before the time when non-zero vorticity achieved this
boundary; that means that in our experiments we can use
any boundary condition at x = A , (0 4 y 4 Y) because we
never make the calculations for such times. The isolines
of the vorticity and the stream function for T = 32 are
shown in. Fig.23-26. It appears that the jet as in th=_
previous experiments doesn't propagate along the wall, but
separates at the same distance as in the previous
experiments.

Thus, in all probability the process of the separation
in these numerical calculations depends only on the
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exisonce of the region cf negative vorticity near the
wall.

F-the confirmation of t*is conclusion we carried
out e:xneriment 10 wi:th the recion cf the negative
vorticlty near the wall =s narro.' as our coputer

resources allow (s = 0.2 in this experiment). The arid
resol-tion was Ax = dy = ". nd the do.:'in -w-_as 10 x 120
cridpcints.

The result o, this experiment is shown in Fig.27
which contains the isolines of vorticity for the time
T = 32. One can see that in accordance with the results
of previous experiments the jet separates at the same
distance form. the point of inflow.

In the last experiment 11 the initial condition was
chanaed. At the time T = 0 the profile of the vorticity
described by the equation 4 was prolongated to 10
gridpcints. (10 cridpoints corresponds to the distance
equal to 2L.) The initial fields of the vorticity and the
stream function and the field of the vorticity at T = 24
are shown in Fia.28-30. For comparison with the result of
experiment with no-slip boundary at x = B, (0 4 y < Y)
and s = I Fig.31 shows isolines of the vorticity for the
time T = 24 for the experiment 8. If we compare Fig.30 and
Fia.31 we can see that the jet separates at the same
distance from the point of the beginning of the
simulation. So we can conclude that if there is a region
of necative vorticity near the wall the jet separates at
the distace of about 5L ( L is half-width of inflow) and
we could not make it to go along the wall in the framwork
of a two-dimensional numerical model.
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